Metamath Proof Explorer


Theorem hlmulf

Description: Mapping for Hilbert space scalar multiplication. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmulf.1 X=BaseSetU
hlmulf.4 S=𝑠OLDU
Assertion hlmulf UCHilOLDS:×XX

Proof

Step Hyp Ref Expression
1 hlmulf.1 X=BaseSetU
2 hlmulf.4 S=𝑠OLDU
3 hlnv UCHilOLDUNrmCVec
4 1 2 nvsf UNrmCVecS:×XX
5 3 4 syl UCHilOLDS:×XX