Metamath Proof Explorer


Theorem ho2coi

Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 R:
hods.2 S:
hods.3 T:
Assertion ho2coi ARSTA=RSTA

Proof

Step Hyp Ref Expression
1 hods.1 R:
2 hods.2 S:
3 hods.3 T:
4 1 2 hocofi RS:
5 4 3 hocoi ARSTA=RSTA
6 3 ffvelcdmi ATA
7 1 2 hocoi TARSTA=RSTA
8 6 7 syl ARSTA=RSTA
9 5 8 eqtrd ARSTA=RSTA