Metamath Proof Explorer


Theorem homa1

Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis homahom.h H=HomaC
Assertion homa1 ZXHYFZ=XY

Proof

Step Hyp Ref Expression
1 homahom.h H=HomaC
2 df-br ZXHYFZFXHY
3 eqid BaseC=BaseC
4 1 homarcl ZFXHYCCat
5 eqid HomC=HomC
6 1 3 homarcl2 ZFXHYXBaseCYBaseC
7 6 simpld ZFXHYXBaseC
8 6 simprd ZFXHYYBaseC
9 1 3 4 5 7 8 elhoma ZFXHYZXHYFZ=XYFXHomCY
10 2 9 sylbi ZXHYFZXHYFZ=XYFXHomCY
11 10 ibi ZXHYFZ=XYFXHomCY
12 11 simpld ZXHYFZ=XY