Metamath Proof Explorer


Theorem homarcl

Description: Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis homarcl.h H=HomaC
Assertion homarcl FXHYCCat

Proof

Step Hyp Ref Expression
1 homarcl.h H=HomaC
2 n0i FXHY¬XHY=
3 df-homa Homa=cCatxBasec×Basecx×Homcx
4 3 fvmptndm ¬CCatHomaC=
5 1 4 eqtrid ¬CCatH=
6 5 oveqd ¬CCatXHY=XY
7 0ov XY=
8 6 7 eqtrdi ¬CCatXHY=
9 2 8 nsyl2 FXHYCCat