Metamath Proof Explorer


Theorem hoscl

Description: Closure of the sum of two Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)

Ref Expression
Assertion hoscl S:T:AS+opTA

Proof

Step Hyp Ref Expression
1 hosval S:T:AS+opTA=SA+TA
2 1 3expa S:T:AS+opTA=SA+TA
3 ffvelcdm S:ASA
4 ffvelcdm T:ATA
5 3 4 anim12i S:AT:ASATA
6 5 anandirs S:T:ASATA
7 hvaddcl SATASA+TA
8 6 7 syl S:T:ASA+TA
9 2 8 eqeltrd S:T:AS+opTA