Metamath Proof Explorer


Theorem hpgtr

Description: The half-plane relation is transitive. Theorem 9.13 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpgid.p P = Base G
hpgid.i I = Itv G
hpgid.l L = Line 𝒢 G
hpgid.g φ G 𝒢 Tarski
hpgid.d φ D ran L
hpgid.a φ A P
hpgid.o O = a b | a P D b P D t D t a I b
hpgcom.b φ B P
hpgcom.1 φ A hp 𝒢 G D B
hpgtr.c φ C P
hpgtr.1 φ B hp 𝒢 G D C
Assertion hpgtr φ A hp 𝒢 G D C

Proof

Step Hyp Ref Expression
1 hpgid.p P = Base G
2 hpgid.i I = Itv G
3 hpgid.l L = Line 𝒢 G
4 hpgid.g φ G 𝒢 Tarski
5 hpgid.d φ D ran L
6 hpgid.a φ A P
7 hpgid.o O = a b | a P D b P D t D t a I b
8 hpgcom.b φ B P
9 hpgcom.1 φ A hp 𝒢 G D B
10 hpgtr.c φ C P
11 hpgtr.1 φ B hp 𝒢 G D C
12 1 2 3 7 4 5 6 8 hpgbr φ A hp 𝒢 G D B c P A O c B O c
13 9 12 mpbid φ c P A O c B O c
14 simprl φ c P A O c B O c A O c
15 11 ad2antrr φ c P A O c B O c B hp 𝒢 G D C
16 4 ad2antrr φ c P A O c B O c G 𝒢 Tarski
17 5 ad2antrr φ c P A O c B O c D ran L
18 8 ad2antrr φ c P A O c B O c B P
19 10 ad2antrr φ c P A O c B O c C P
20 simplr φ c P A O c B O c c P
21 simprr φ c P A O c B O c B O c
22 1 2 3 7 16 17 18 19 20 21 lnopp2hpgb φ c P A O c B O c C O c B hp 𝒢 G D C
23 15 22 mpbird φ c P A O c B O c C O c
24 14 23 jca φ c P A O c B O c A O c C O c
25 24 ex φ c P A O c B O c A O c C O c
26 25 reximdva φ c P A O c B O c c P A O c C O c
27 13 26 mpd φ c P A O c C O c
28 1 2 3 7 4 5 6 10 hpgbr φ A hp 𝒢 G D C c P A O c C O c
29 27 28 mpbird φ A hp 𝒢 G D C