Metamath Proof Explorer


Theorem hphl

Description: If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses hpgid.p P=BaseG
hpgid.i I=ItvG
hpgid.l L=Line𝒢G
hpgid.g φG𝒢Tarski
hpgid.d φDranL
hpgid.a φAP
hpgid.o O=ab|aPDbPDtDtaIb
hphl.k K=hl𝒢G
hphl.a φAD
hphl.b φBP
hphl.c φCP
hphl.1 φ¬BD
hphl.2 φBKAC
Assertion hphl φBhp𝒢GDC

Proof

Step Hyp Ref Expression
1 hpgid.p P=BaseG
2 hpgid.i I=ItvG
3 hpgid.l L=Line𝒢G
4 hpgid.g φG𝒢Tarski
5 hpgid.d φDranL
6 hpgid.a φAP
7 hpgid.o O=ab|aPDbPDtDtaIb
8 hphl.k K=hl𝒢G
9 hphl.a φAD
10 hphl.b φBP
11 hphl.c φCP
12 hphl.1 φ¬BD
13 hphl.2 φBKAC
14 1 2 8 10 11 6 4 3 13 hlln φBCLA
15 14 orcd φBCLAC=A
16 1 3 2 4 11 6 10 15 colrot2 φABLCB=C
17 1 2 3 4 5 10 7 11 9 16 8 colhp φBhp𝒢GDCBKAC¬BD
18 13 12 17 mpbir2and φBhp𝒢GDC