Metamath Proof Explorer


Theorem hst0

Description: A Hilbert-space-valued state is zero at the zero subspace. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hst0 SCHStatesS0=0

Proof

Step Hyp Ref Expression
1 h0elch 0C
2 helch C
3 2 choccli C
4 3 ch0lei 0
5 hstorth SCHStates0CC0S0ihS=0
6 2 4 5 mpanr12 SCHStates0CS0ihS=0
7 1 6 mpan2 SCHStatesS0ihS=0
8 hstoh SCHStates0CS0ihS=0S0=0
9 1 8 mp3an2 SCHStatesS0ihS=0S0=0
10 7 9 mpdan SCHStatesS0=0