Metamath Proof Explorer


Theorem hstrbi

Description: Strong CH-state theorem (bidirectional version). Theorem in Mayet3 p. 10 and its converse. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstr.1 AC
hstr.2 BC
Assertion hstrbi fCHStatesnormfA=1normfB=1AB

Proof

Step Hyp Ref Expression
1 hstr.1 AC
2 hstr.2 BC
3 1 2 hstri fCHStatesnormfA=1normfB=1AB
4 hstles fCHStatesACBCABnormfA=1normfB=1
5 2 4 mpanr1 fCHStatesACABnormfA=1normfB=1
6 1 5 mpanl2 fCHStatesABnormfA=1normfB=1
7 6 expcom ABfCHStatesnormfA=1normfB=1
8 7 ralrimiv ABfCHStatesnormfA=1normfB=1
9 3 8 impbii fCHStatesnormfA=1normfB=1AB