Metamath Proof Explorer


Theorem hvmulcom

Description: Scalar multiplication commutative law. (Contributed by NM, 19-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvmulcom ABCABC=BAC

Proof

Step Hyp Ref Expression
1 mulcom ABAB=BA
2 1 oveq1d ABABC=BAC
3 2 3adant3 ABCABC=BAC
4 ax-hvmulass ABCABC=ABC
5 ax-hvmulass BACBAC=BAC
6 5 3com12 ABCBAC=BAC
7 3 4 6 3eqtr3d ABCABC=BAC