Metamath Proof Explorer


Theorem hvnegdii

Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 A
hvnegdi.2 B
Assertion hvnegdii -1A-B=B-A

Proof

Step Hyp Ref Expression
1 hvnegdi.1 A
2 hvnegdi.2 B
3 1 2 hvsubvali A-B=A+-1B
4 3 oveq2i -1A-B=-1A+-1B
5 neg1cn 1
6 5 2 hvmulcli -1B
7 5 1 6 hvdistr1i -1A+-1B=-1A+-1-1B
8 neg1mulneg1e1 -1-1=1
9 8 oveq1i -1-1B=1B
10 5 5 2 hvmulassi -1-1B=-1-1B
11 ax-hvmulid B1B=B
12 2 11 ax-mp 1B=B
13 9 10 12 3eqtr3i -1-1B=B
14 13 oveq1i -1-1B+-1A=B+-1A
15 5 1 hvmulcli -1A
16 5 6 hvmulcli -1-1B
17 15 16 hvcomi -1A+-1-1B=-1-1B+-1A
18 2 1 hvsubvali B-A=B+-1A
19 14 17 18 3eqtr4i -1A+-1-1B=B-A
20 4 7 19 3eqtri -1A-B=B-A