Metamath Proof Explorer


Theorem hvsub32

Description: Hilbert vector space commutative/associative law. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hvsub32 ABCA-B-C=A-C-B

Proof

Step Hyp Ref Expression
1 ax-hvcom BCB+C=C+B
2 1 3adant1 ABCB+C=C+B
3 2 oveq2d ABCA-B+C=A-C+B
4 hvsubass ABCA-B-C=A-B+C
5 hvsubass ACBA-C-B=A-C+B
6 5 3com23 ABCA-C-B=A-C+B
7 3 4 6 3eqtr4d ABCA-B-C=A-C-B