Metamath Proof Explorer


Theorem hvsubcan2i

Description: Vector cancellation law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 A
hvnegdi.2 B
Assertion hvsubcan2i A+B+A-B=2A

Proof

Step Hyp Ref Expression
1 hvnegdi.1 A
2 hvnegdi.2 B
3 1 2 hvsubvali A-B=A+-1B
4 3 oveq2i A+B+A-B=A+B+A+-1B
5 neg1cn 1
6 5 2 hvmulcli -1B
7 1 2 1 6 hvadd4i A+B+A+-1B=A+A+B+-1B
8 hv2times A2A=A+A
9 1 8 ax-mp 2A=A+A
10 9 eqcomi A+A=2A
11 2 hvnegidi B+-1B=0
12 10 11 oveq12i A+A+B+-1B=2A+0
13 7 12 eqtri A+B+A+-1B=2A+0
14 2cn 2
15 14 1 hvmulcli 2A
16 ax-hvaddid 2A2A+0=2A
17 15 16 ax-mp 2A+0=2A
18 13 17 eqtri A+B+A+-1B=2A
19 4 18 eqtri A+B+A-B=2A