Metamath Proof Explorer


Theorem iblconstmpt

Description: A constant function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iblconstmpt AdomvolvolABxAB𝐿1

Proof

Step Hyp Ref Expression
1 fconstmpt A×B=xAB
2 iblconst AdomvolvolABA×B𝐿1
3 1 2 eqeltrrid AdomvolvolABxAB𝐿1