Metamath Proof Explorer


Theorem ichbi12i

Description: Equivalence for interchangeable setvar variables. (Contributed by AV, 29-Jul-2023)

Ref Expression
Hypothesis ichbi12i.1 x=ay=bψχ
Assertion ichbi12i xyψabχ

Proof

Step Hyp Ref Expression
1 ichbi12i.1 x=ay=bψχ
2 nfv bψ
3 2 sbco2v vbbyψvyψ
4 3 bicomi vyψvbbyψ
5 4 sbbii axvyψaxvbbyψ
6 sbcom2 axvbbyψvbaxbyψ
7 5 6 bitri axvyψvbaxbyψ
8 7 sbbii uaaxvyψuavbaxbyψ
9 nfv aψ
10 9 nfsbv avyψ
11 10 sbco2v uaaxvyψuxvyψ
12 1 2sbievw axbyψχ
13 12 2sbbii uavbaxbyψuavbχ
14 8 11 13 3bitr3i uxvyψuavbχ
15 sbcom2 ubaxbyψaxubbyψ
16 2 sbco2v ubbyψuyψ
17 16 sbbii axubbyψaxuyψ
18 15 17 bitri ubaxbyψaxuyψ
19 18 sbbii vaubaxbyψvaaxuyψ
20 12 2sbbii vaubaxbyψvaubχ
21 9 nfsbv auyψ
22 21 sbco2v vaaxuyψvxuyψ
23 19 20 22 3bitr3ri vxuyψvaubχ
24 14 23 bibi12i uxvyψvxuyψuavbχvaubχ
25 24 2albii uvuxvyψvxuyψuvuavbχvaubχ
26 dfich2 xyψuvuxvyψvxuyψ
27 dfich2 abχuvuavbχvaubχ
28 25 26 27 3bitr4i xyψabχ