Metamath Proof Explorer


Theorem icogelbd

Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses icogelbd.1 φA*
icogelbd.2 φB*
icogelbd.3 φCAB
Assertion icogelbd φAC

Proof

Step Hyp Ref Expression
1 icogelbd.1 φA*
2 icogelbd.2 φB*
3 icogelbd.3 φCAB
4 icogelb A*B*CABAC
5 1 2 3 4 syl3anc φAC