Metamath Proof Explorer


Theorem idcncfg

Description: The identity function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses idcncfg.a φAB
idcncfg.b φB
Assertion idcncfg φxAx:AcnB

Proof

Step Hyp Ref Expression
1 idcncfg.a φAB
2 idcncfg.b φB
3 cncfmptid ABBxAx:AcnB
4 1 2 3 syl2anc φxAx:AcnB