Metamath Proof Explorer


Theorem cncfshift

Description: A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfshift.a φA
cncfshift.t φT
cncfshift.b B=x|yAx=y+T
cncfshift.f φF:Acn
cncfshift.g G=xBFxT
Assertion cncfshift φG:Bcn

Proof

Step Hyp Ref Expression
1 cncfshift.a φA
2 cncfshift.t φT
3 cncfshift.b B=x|yAx=y+T
4 cncfshift.f φF:Acn
5 cncfshift.g G=xBFxT
6 cncff F:AcnF:A
7 4 6 syl φF:A
8 7 adantr φxBF:A
9 simpr φxBxB
10 9 3 eleqtrdi φxBxx|yAx=y+T
11 rabid xx|yAx=y+TxyAx=y+T
12 10 11 sylib φxBxyAx=y+T
13 12 simprd φxByAx=y+T
14 oveq1 x=y+TxT=y+T-T
15 14 3ad2ant3 φxByAx=y+TxT=y+T-T
16 1 sselda φyAy
17 2 adantr φyAT
18 16 17 pncand φyAy+T-T=y
19 18 adantlr φxByAy+T-T=y
20 19 3adant3 φxByAx=y+Ty+T-T=y
21 15 20 eqtrd φxByAx=y+TxT=y
22 simp2 φxByAx=y+TyA
23 21 22 eqeltrd φxByAx=y+TxTA
24 23 rexlimdv3a φxByAx=y+TxTA
25 13 24 mpd φxBxTA
26 8 25 ffvelcdmd φxBFxT
27 26 5 fmptd φG:B
28 fvoveq1 a=xTab=x-T-b
29 28 breq1d a=xTab<zx-T-b<z
30 29 imbrov2fvoveq a=xTab<zFaFb<wx-T-b<zFxTFb<w
31 30 rexralbidv a=xTz+bAab<zFaFb<wz+bAx-T-b<zFxTFb<w
32 31 ralbidv a=xTw+z+bAab<zFaFb<ww+z+bAx-T-b<zFxTFb<w
33 4 adantr φxBF:Acn
34 1 adantr φxBA
35 ssid
36 elcncf AF:AcnF:AaAw+z+bAab<zFaFb<w
37 34 35 36 sylancl φxBF:AcnF:AaAw+z+bAab<zFaFb<w
38 33 37 mpbid φxBF:AaAw+z+bAab<zFaFb<w
39 38 simprd φxBaAw+z+bAab<zFaFb<w
40 32 39 25 rspcdva φxBw+z+bAx-T-b<zFxTFb<w
41 40 adantrr φxBw+w+z+bAx-T-b<zFxTFb<w
42 simprr φxBw+w+
43 rspa w+z+bAx-T-b<zFxTFb<ww+z+bAx-T-b<zFxTFb<w
44 41 42 43 syl2anc φxBw+z+bAx-T-b<zFxTFb<w
45 simpl1l φxBw+z+bAx-T-b<zFxTFb<wvBφ
46 45 adantr φxBw+z+bAx-T-b<zFxTFb<wvBxv<zφ
47 simp1rl φxBw+z+bAx-T-b<zFxTFb<wxB
48 47 ad2antrr φxBw+z+bAx-T-b<zFxTFb<wvBxv<zxB
49 simplr φxBw+z+bAx-T-b<zFxTFb<wvBxv<zvB
50 5 fvmpt2 xBFxTGx=FxT
51 9 26 50 syl2anc φxBGx=FxT
52 51 3adant3 φxBvBGx=FxT
53 fvoveq1 x=vFxT=FvT
54 simpr φvBvB
55 7 adantr φvBF:A
56 eleq1w x=vxBvB
57 56 anbi2d x=vφxBφvB
58 oveq1 x=vxT=vT
59 58 eleq1d x=vxTAvTA
60 57 59 imbi12d x=vφxBxTAφvBvTA
61 60 25 chvarvv φvBvTA
62 55 61 ffvelcdmd φvBFvT
63 5 53 54 62 fvmptd3 φvBGv=FvT
64 63 3adant2 φxBvBGv=FvT
65 52 64 oveq12d φxBvBGxGv=FxTFvT
66 65 fveq2d φxBvBGxGv=FxTFvT
67 46 48 49 66 syl3anc φxBw+z+bAx-T-b<zFxTFb<wvBxv<zGxGv=FxTFvT
68 simpr φxBw+z+bAx-T-b<zFxTFb<wvBxv<zxv<z
69 12 simpld φxBx
70 69 adantr φxBvBx
71 3 ssrab3 B
72 71 sseli vBv
73 72 adantl φxBvBv
74 2 ad2antrr φxBvBT
75 70 73 74 nnncan2d φxBvBx-T-vT=xv
76 75 fveq2d φxBvBx-T-vT=xv
77 76 adantr φxBvBxv<zx-T-vT=xv
78 simpr φxBvBxv<zxv<z
79 77 78 eqbrtrd φxBvBxv<zx-T-vT<z
80 46 48 49 68 79 syl1111anc φxBw+z+bAx-T-b<zFxTFb<wvBxv<zx-T-vT<z
81 oveq2 b=vTx-T-b=x-T-vT
82 81 fveq2d b=vTx-T-b=x-T-vT
83 82 breq1d b=vTx-T-b<zx-T-vT<z
84 fveq2 b=vTFb=FvT
85 84 oveq2d b=vTFxTFb=FxTFvT
86 85 fveq2d b=vTFxTFb=FxTFvT
87 86 breq1d b=vTFxTFb<wFxTFvT<w
88 83 87 imbi12d b=vTx-T-b<zFxTFb<wx-T-vT<zFxTFvT<w
89 simpll3 φxBw+z+bAx-T-b<zFxTFb<wvBxv<zbAx-T-b<zFxTFb<w
90 46 49 61 syl2anc φxBw+z+bAx-T-b<zFxTFb<wvBxv<zvTA
91 88 89 90 rspcdva φxBw+z+bAx-T-b<zFxTFb<wvBxv<zx-T-vT<zFxTFvT<w
92 80 91 mpd φxBw+z+bAx-T-b<zFxTFb<wvBxv<zFxTFvT<w
93 67 92 eqbrtrd φxBw+z+bAx-T-b<zFxTFb<wvBxv<zGxGv<w
94 93 ex φxBw+z+bAx-T-b<zFxTFb<wvBxv<zGxGv<w
95 94 ralrimiva φxBw+z+bAx-T-b<zFxTFb<wvBxv<zGxGv<w
96 95 3exp φxBw+z+bAx-T-b<zFxTFb<wvBxv<zGxGv<w
97 96 reximdvai φxBw+z+bAx-T-b<zFxTFb<wz+vBxv<zGxGv<w
98 44 97 mpd φxBw+z+vBxv<zGxGv<w
99 98 ralrimivva φxBw+z+vBxv<zGxGv<w
100 71 a1i φB
101 elcncf BG:BcnG:BaBw+z+vBav<zGaGv<w
102 100 35 101 sylancl φG:BcnG:BaBw+z+vBav<zGaGv<w
103 nfcv _x+
104 nfcv _xB
105 nfv xav<z
106 nfcv _xabs
107 nfmpt1 _xxBFxT
108 5 107 nfcxfr _xG
109 nfcv _xa
110 108 109 nffv _xGa
111 nfcv _x
112 nfcv _xv
113 108 112 nffv _xGv
114 110 111 113 nfov _xGaGv
115 106 114 nffv _xGaGv
116 nfcv _x<
117 nfcv _xw
118 115 116 117 nfbr xGaGv<w
119 105 118 nfim xav<zGaGv<w
120 104 119 nfralw xvBav<zGaGv<w
121 103 120 nfrexw xz+vBav<zGaGv<w
122 103 121 nfralw xw+z+vBav<zGaGv<w
123 nfv aw+z+vBxv<zGxGv<w
124 fvoveq1 a=xav=xv
125 124 breq1d a=xav<zxv<z
126 125 imbrov2fvoveq a=xav<zGaGv<wxv<zGxGv<w
127 126 rexralbidv a=xz+vBav<zGaGv<wz+vBxv<zGxGv<w
128 127 ralbidv a=xw+z+vBav<zGaGv<ww+z+vBxv<zGxGv<w
129 122 123 128 cbvralw aBw+z+vBav<zGaGv<wxBw+z+vBxv<zGxGv<w
130 129 bicomi xBw+z+vBxv<zGxGv<waBw+z+vBav<zGaGv<w
131 130 anbi2i G:BxBw+z+vBxv<zGxGv<wG:BaBw+z+vBav<zGaGv<w
132 102 131 bitr4di φG:BcnG:BxBw+z+vBxv<zGxGv<w
133 27 99 132 mpbir2and φG:Bcn