Step |
Hyp |
Ref |
Expression |
1 |
|
cncfshift.a |
|- ( ph -> A C_ CC ) |
2 |
|
cncfshift.t |
|- ( ph -> T e. CC ) |
3 |
|
cncfshift.b |
|- B = { x e. CC | E. y e. A x = ( y + T ) } |
4 |
|
cncfshift.f |
|- ( ph -> F e. ( A -cn-> CC ) ) |
5 |
|
cncfshift.g |
|- G = ( x e. B |-> ( F ` ( x - T ) ) ) |
6 |
|
cncff |
|- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
7 |
4 6
|
syl |
|- ( ph -> F : A --> CC ) |
8 |
7
|
adantr |
|- ( ( ph /\ x e. B ) -> F : A --> CC ) |
9 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
10 |
9 3
|
eleqtrdi |
|- ( ( ph /\ x e. B ) -> x e. { x e. CC | E. y e. A x = ( y + T ) } ) |
11 |
|
rabid |
|- ( x e. { x e. CC | E. y e. A x = ( y + T ) } <-> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) |
12 |
10 11
|
sylib |
|- ( ( ph /\ x e. B ) -> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) |
13 |
12
|
simprd |
|- ( ( ph /\ x e. B ) -> E. y e. A x = ( y + T ) ) |
14 |
|
oveq1 |
|- ( x = ( y + T ) -> ( x - T ) = ( ( y + T ) - T ) ) |
15 |
14
|
3ad2ant3 |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = ( ( y + T ) - T ) ) |
16 |
1
|
sselda |
|- ( ( ph /\ y e. A ) -> y e. CC ) |
17 |
2
|
adantr |
|- ( ( ph /\ y e. A ) -> T e. CC ) |
18 |
16 17
|
pncand |
|- ( ( ph /\ y e. A ) -> ( ( y + T ) - T ) = y ) |
19 |
18
|
adantlr |
|- ( ( ( ph /\ x e. B ) /\ y e. A ) -> ( ( y + T ) - T ) = y ) |
20 |
19
|
3adant3 |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( ( y + T ) - T ) = y ) |
21 |
15 20
|
eqtrd |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = y ) |
22 |
|
simp2 |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> y e. A ) |
23 |
21 22
|
eqeltrd |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) e. A ) |
24 |
23
|
rexlimdv3a |
|- ( ( ph /\ x e. B ) -> ( E. y e. A x = ( y + T ) -> ( x - T ) e. A ) ) |
25 |
13 24
|
mpd |
|- ( ( ph /\ x e. B ) -> ( x - T ) e. A ) |
26 |
8 25
|
ffvelrnd |
|- ( ( ph /\ x e. B ) -> ( F ` ( x - T ) ) e. CC ) |
27 |
26 5
|
fmptd |
|- ( ph -> G : B --> CC ) |
28 |
|
fvoveq1 |
|- ( a = ( x - T ) -> ( abs ` ( a - b ) ) = ( abs ` ( ( x - T ) - b ) ) ) |
29 |
28
|
breq1d |
|- ( a = ( x - T ) -> ( ( abs ` ( a - b ) ) < z <-> ( abs ` ( ( x - T ) - b ) ) < z ) ) |
30 |
29
|
imbrov2fvoveq |
|- ( a = ( x - T ) -> ( ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) ) |
31 |
30
|
rexralbidv |
|- ( a = ( x - T ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) <-> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) ) |
32 |
31
|
ralbidv |
|- ( a = ( x - T ) -> ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) <-> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) ) |
33 |
4
|
adantr |
|- ( ( ph /\ x e. B ) -> F e. ( A -cn-> CC ) ) |
34 |
1
|
adantr |
|- ( ( ph /\ x e. B ) -> A C_ CC ) |
35 |
|
ssid |
|- CC C_ CC |
36 |
|
elcncf |
|- ( ( A C_ CC /\ CC C_ CC ) -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) ) ) |
37 |
34 35 36
|
sylancl |
|- ( ( ph /\ x e. B ) -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) ) ) |
38 |
33 37
|
mpbid |
|- ( ( ph /\ x e. B ) -> ( F : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) ) |
39 |
38
|
simprd |
|- ( ( ph /\ x e. B ) -> A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) |
40 |
32 39 25
|
rspcdva |
|- ( ( ph /\ x e. B ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
41 |
40
|
adantrr |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
42 |
|
simprr |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> w e. RR+ ) |
43 |
|
rspa |
|- ( ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) /\ w e. RR+ ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
44 |
41 42 43
|
syl2anc |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
45 |
|
simpl1l |
|- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) -> ph ) |
46 |
45
|
adantr |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ph ) |
47 |
|
simp1rl |
|- ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) -> x e. B ) |
48 |
47
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> x e. B ) |
49 |
|
simplr |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> v e. B ) |
50 |
5
|
fvmpt2 |
|- ( ( x e. B /\ ( F ` ( x - T ) ) e. CC ) -> ( G ` x ) = ( F ` ( x - T ) ) ) |
51 |
9 26 50
|
syl2anc |
|- ( ( ph /\ x e. B ) -> ( G ` x ) = ( F ` ( x - T ) ) ) |
52 |
51
|
3adant3 |
|- ( ( ph /\ x e. B /\ v e. B ) -> ( G ` x ) = ( F ` ( x - T ) ) ) |
53 |
|
fvoveq1 |
|- ( x = v -> ( F ` ( x - T ) ) = ( F ` ( v - T ) ) ) |
54 |
|
simpr |
|- ( ( ph /\ v e. B ) -> v e. B ) |
55 |
7
|
adantr |
|- ( ( ph /\ v e. B ) -> F : A --> CC ) |
56 |
|
eleq1w |
|- ( x = v -> ( x e. B <-> v e. B ) ) |
57 |
56
|
anbi2d |
|- ( x = v -> ( ( ph /\ x e. B ) <-> ( ph /\ v e. B ) ) ) |
58 |
|
oveq1 |
|- ( x = v -> ( x - T ) = ( v - T ) ) |
59 |
58
|
eleq1d |
|- ( x = v -> ( ( x - T ) e. A <-> ( v - T ) e. A ) ) |
60 |
57 59
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. B ) -> ( x - T ) e. A ) <-> ( ( ph /\ v e. B ) -> ( v - T ) e. A ) ) ) |
61 |
60 25
|
chvarvv |
|- ( ( ph /\ v e. B ) -> ( v - T ) e. A ) |
62 |
55 61
|
ffvelrnd |
|- ( ( ph /\ v e. B ) -> ( F ` ( v - T ) ) e. CC ) |
63 |
5 53 54 62
|
fvmptd3 |
|- ( ( ph /\ v e. B ) -> ( G ` v ) = ( F ` ( v - T ) ) ) |
64 |
63
|
3adant2 |
|- ( ( ph /\ x e. B /\ v e. B ) -> ( G ` v ) = ( F ` ( v - T ) ) ) |
65 |
52 64
|
oveq12d |
|- ( ( ph /\ x e. B /\ v e. B ) -> ( ( G ` x ) - ( G ` v ) ) = ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) |
66 |
65
|
fveq2d |
|- ( ( ph /\ x e. B /\ v e. B ) -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) = ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) ) |
67 |
46 48 49 66
|
syl3anc |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) = ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) ) |
68 |
|
simpr |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) |
69 |
12
|
simpld |
|- ( ( ph /\ x e. B ) -> x e. CC ) |
70 |
69
|
adantr |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> x e. CC ) |
71 |
3
|
ssrab3 |
|- B C_ CC |
72 |
71
|
sseli |
|- ( v e. B -> v e. CC ) |
73 |
72
|
adantl |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> v e. CC ) |
74 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> T e. CC ) |
75 |
70 73 74
|
nnncan2d |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( ( x - T ) - ( v - T ) ) = ( x - v ) ) |
76 |
75
|
fveq2d |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) |
77 |
76
|
adantr |
|- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) |
78 |
|
simpr |
|- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) |
79 |
77 78
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) |
80 |
46 48 49 68 79
|
syl1111anc |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) |
81 |
|
oveq2 |
|- ( b = ( v - T ) -> ( ( x - T ) - b ) = ( ( x - T ) - ( v - T ) ) ) |
82 |
81
|
fveq2d |
|- ( b = ( v - T ) -> ( abs ` ( ( x - T ) - b ) ) = ( abs ` ( ( x - T ) - ( v - T ) ) ) ) |
83 |
82
|
breq1d |
|- ( b = ( v - T ) -> ( ( abs ` ( ( x - T ) - b ) ) < z <-> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) ) |
84 |
|
fveq2 |
|- ( b = ( v - T ) -> ( F ` b ) = ( F ` ( v - T ) ) ) |
85 |
84
|
oveq2d |
|- ( b = ( v - T ) -> ( ( F ` ( x - T ) ) - ( F ` b ) ) = ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) |
86 |
85
|
fveq2d |
|- ( b = ( v - T ) -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) = ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) ) |
87 |
86
|
breq1d |
|- ( b = ( v - T ) -> ( ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w <-> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) ) |
88 |
83 87
|
imbi12d |
|- ( b = ( v - T ) -> ( ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) ) ) |
89 |
|
simpll3 |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
90 |
46 49 61
|
syl2anc |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( v - T ) e. A ) |
91 |
88 89 90
|
rspcdva |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) ) |
92 |
80 91
|
mpd |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) |
93 |
67 92
|
eqbrtrd |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) |
94 |
93
|
ex |
|- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) -> ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
95 |
94
|
ralrimiva |
|- ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
96 |
95
|
3exp |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( z e. RR+ -> ( A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) ) |
97 |
96
|
reximdvai |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) |
98 |
44 97
|
mpd |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
99 |
98
|
ralrimivva |
|- ( ph -> A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
100 |
71
|
a1i |
|- ( ph -> B C_ CC ) |
101 |
|
elcncf |
|- ( ( B C_ CC /\ CC C_ CC ) -> ( G e. ( B -cn-> CC ) <-> ( G : B --> CC /\ A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) ) ) |
102 |
100 35 101
|
sylancl |
|- ( ph -> ( G e. ( B -cn-> CC ) <-> ( G : B --> CC /\ A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) ) ) |
103 |
|
nfcv |
|- F/_ x RR+ |
104 |
|
nfcv |
|- F/_ x B |
105 |
|
nfv |
|- F/ x ( abs ` ( a - v ) ) < z |
106 |
|
nfcv |
|- F/_ x abs |
107 |
|
nfmpt1 |
|- F/_ x ( x e. B |-> ( F ` ( x - T ) ) ) |
108 |
5 107
|
nfcxfr |
|- F/_ x G |
109 |
|
nfcv |
|- F/_ x a |
110 |
108 109
|
nffv |
|- F/_ x ( G ` a ) |
111 |
|
nfcv |
|- F/_ x - |
112 |
|
nfcv |
|- F/_ x v |
113 |
108 112
|
nffv |
|- F/_ x ( G ` v ) |
114 |
110 111 113
|
nfov |
|- F/_ x ( ( G ` a ) - ( G ` v ) ) |
115 |
106 114
|
nffv |
|- F/_ x ( abs ` ( ( G ` a ) - ( G ` v ) ) ) |
116 |
|
nfcv |
|- F/_ x < |
117 |
|
nfcv |
|- F/_ x w |
118 |
115 116 117
|
nfbr |
|- F/ x ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w |
119 |
105 118
|
nfim |
|- F/ x ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) |
120 |
104 119
|
nfralw |
|- F/ x A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) |
121 |
103 120
|
nfrex |
|- F/ x E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) |
122 |
103 121
|
nfralw |
|- F/ x A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) |
123 |
|
nfv |
|- F/ a A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) |
124 |
|
fvoveq1 |
|- ( a = x -> ( abs ` ( a - v ) ) = ( abs ` ( x - v ) ) ) |
125 |
124
|
breq1d |
|- ( a = x -> ( ( abs ` ( a - v ) ) < z <-> ( abs ` ( x - v ) ) < z ) ) |
126 |
125
|
imbrov2fvoveq |
|- ( a = x -> ( ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) |
127 |
126
|
rexralbidv |
|- ( a = x -> ( E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) |
128 |
127
|
ralbidv |
|- ( a = x -> ( A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) |
129 |
122 123 128
|
cbvralw |
|- ( A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
130 |
129
|
bicomi |
|- ( A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) <-> A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) |
131 |
130
|
anbi2i |
|- ( ( G : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) <-> ( G : B --> CC /\ A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) ) |
132 |
102 131
|
bitr4di |
|- ( ph -> ( G e. ( B -cn-> CC ) <-> ( G : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) ) |
133 |
27 99 132
|
mpbir2and |
|- ( ph -> G e. ( B -cn-> CC ) ) |