Metamath Proof Explorer


Theorem idfullsubc

Description: The source category of an inclusion functor is a full subcategory of the target category if the inclusion functor is full. Remark 4.4(2) in Adamek p. 49. See also ressffth . (Contributed by Zhi Wang, 11-Nov-2025)

Ref Expression
Hypotheses idfth.i I = id func C
idsubc.h H = Hom 𝑓 D
idfullsubc.j J = Hom 𝑓 E
idfullsubc.b B = Base D
idfullsubc.c C = Base E
Assertion idfullsubc I D Full E B C J B × B = H

Proof

Step Hyp Ref Expression
1 idfth.i I = id func C
2 idsubc.h H = Hom 𝑓 D
3 idfullsubc.j J = Hom 𝑓 E
4 idfullsubc.b B = Base D
5 idfullsubc.c C = Base E
6 fullfunc D Full E D Func E
7 6 sseli I D Full E I D Func E
8 1 7 imaidfu2lem I D Full E 1 st I Base D = Base D
9 4 8 eqtr4id I D Full E B = 1 st I Base D
10 eqid 1 st I Base D = 1 st I Base D
11 eqid Hom D = Hom D
12 eqid x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p = x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p
13 relfull Rel D Full E
14 1st2ndbr Rel D Full E I D Full E 1 st I D Full E 2 nd I
15 13 14 mpan I D Full E 1 st I D Full E 2 nd I
16 10 11 12 15 5 3 imasubc I D Full E x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p Fn 1 st I Base D × 1 st I Base D 1 st I Base D C J 1 st I Base D × 1 st I Base D = x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p
17 16 simp2d I D Full E 1 st I Base D C
18 9 17 eqsstrd I D Full E B C
19 16 simp3d I D Full E J 1 st I Base D × 1 st I Base D = x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p
20 9 sqxpeqd I D Full E B × B = 1 st I Base D × 1 st I Base D
21 20 reseq2d I D Full E J B × B = J 1 st I Base D × 1 st I Base D
22 1 7 11 2 12 8 imaidfu2 I D Full E H = x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p
23 19 21 22 3eqtr4d I D Full E J B × B = H
24 18 23 jca I D Full E B C J B × B = H