Description: The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in Adamek p. 49. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressffth.d | |
|
ressffth.i | |
||
Assertion | ressffth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressffth.d | |
|
2 | ressffth.i | |
|
3 | relfunc | |
|
4 | resscat | |
|
5 | 1 4 | eqeltrid | |
6 | 2 | idfucl | |
7 | 5 6 | syl | |
8 | 1st2nd | |
|
9 | 3 7 8 | sylancr | |
10 | eqidd | |
|
11 | eqidd | |
|
12 | eqid | |
|
13 | 12 | ressinbas | |
14 | 13 | adantl | |
15 | 1 14 | eqtrid | |
16 | 15 | fveq2d | |
17 | eqid | |
|
18 | simpl | |
|
19 | inss2 | |
|
20 | 19 | a1i | |
21 | eqid | |
|
22 | eqid | |
|
23 | 12 17 18 20 21 22 | fullresc | |
24 | 23 | simpld | |
25 | 16 24 | eqtrd | |
26 | 15 | fveq2d | |
27 | 23 | simprd | |
28 | 26 27 | eqtrd | |
29 | 1 | ovexi | |
30 | 29 | a1i | |
31 | ovexd | |
|
32 | 10 11 25 28 30 30 30 31 | funcpropd | |
33 | 12 17 18 20 | fullsubc | |
34 | funcres2 | |
|
35 | 33 34 | syl | |
36 | 32 35 | eqsstrd | |
37 | 36 7 | sseldd | |
38 | 9 37 | eqeltrrd | |
39 | df-br | |
|
40 | 38 39 | sylibr | |
41 | f1oi | |
|
42 | eqid | |
|
43 | 5 | adantr | |
44 | eqid | |
|
45 | simprl | |
|
46 | simprr | |
|
47 | 2 42 43 44 45 46 | idfu2nd | |
48 | eqidd | |
|
49 | eqid | |
|
50 | 1 49 | resshom | |
51 | 50 | ad2antlr | |
52 | 2 42 43 45 | idfu1 | |
53 | 2 42 43 46 | idfu1 | |
54 | 51 52 53 | oveq123d | |
55 | 47 48 54 | f1oeq123d | |
56 | 41 55 | mpbiri | |
57 | 56 | ralrimivva | |
58 | 42 44 49 | isffth2 | |
59 | 40 57 58 | sylanbrc | |
60 | df-br | |
|
61 | 59 60 | sylib | |
62 | 9 61 | eqeltrd | |