Metamath Proof Explorer


Theorem ressffth

Description: The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in Adamek p. 49. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses ressffth.d D=C𝑠S
ressffth.i I=idfuncD
Assertion ressffth CCatSVIDFullCDFaithC

Proof

Step Hyp Ref Expression
1 ressffth.d D=C𝑠S
2 ressffth.i I=idfuncD
3 relfunc RelDFuncD
4 resscat CCatSVC𝑠SCat
5 1 4 eqeltrid CCatSVDCat
6 2 idfucl DCatIDFuncD
7 5 6 syl CCatSVIDFuncD
8 1st2nd RelDFuncDIDFuncDI=1stI2ndI
9 3 7 8 sylancr CCatSVI=1stI2ndI
10 eqidd CCatSVHom𝑓D=Hom𝑓D
11 eqidd CCatSVcomp𝑓D=comp𝑓D
12 eqid BaseC=BaseC
13 12 ressinbas SVC𝑠S=C𝑠SBaseC
14 13 adantl CCatSVC𝑠S=C𝑠SBaseC
15 1 14 eqtrid CCatSVD=C𝑠SBaseC
16 15 fveq2d CCatSVHom𝑓D=Hom𝑓C𝑠SBaseC
17 eqid Hom𝑓C=Hom𝑓C
18 simpl CCatSVCCat
19 inss2 SBaseCBaseC
20 19 a1i CCatSVSBaseCBaseC
21 eqid C𝑠SBaseC=C𝑠SBaseC
22 eqid CcatHom𝑓CSBaseC×SBaseC=CcatHom𝑓CSBaseC×SBaseC
23 12 17 18 20 21 22 fullresc CCatSVHom𝑓C𝑠SBaseC=Hom𝑓CcatHom𝑓CSBaseC×SBaseCcomp𝑓C𝑠SBaseC=comp𝑓CcatHom𝑓CSBaseC×SBaseC
24 23 simpld CCatSVHom𝑓C𝑠SBaseC=Hom𝑓CcatHom𝑓CSBaseC×SBaseC
25 16 24 eqtrd CCatSVHom𝑓D=Hom𝑓CcatHom𝑓CSBaseC×SBaseC
26 15 fveq2d CCatSVcomp𝑓D=comp𝑓C𝑠SBaseC
27 23 simprd CCatSVcomp𝑓C𝑠SBaseC=comp𝑓CcatHom𝑓CSBaseC×SBaseC
28 26 27 eqtrd CCatSVcomp𝑓D=comp𝑓CcatHom𝑓CSBaseC×SBaseC
29 1 ovexi DV
30 29 a1i CCatSVDV
31 ovexd CCatSVCcatHom𝑓CSBaseC×SBaseCV
32 10 11 25 28 30 30 30 31 funcpropd CCatSVDFuncD=DFuncCcatHom𝑓CSBaseC×SBaseC
33 12 17 18 20 fullsubc CCatSVHom𝑓CSBaseC×SBaseCSubcatC
34 funcres2 Hom𝑓CSBaseC×SBaseCSubcatCDFuncCcatHom𝑓CSBaseC×SBaseCDFuncC
35 33 34 syl CCatSVDFuncCcatHom𝑓CSBaseC×SBaseCDFuncC
36 32 35 eqsstrd CCatSVDFuncDDFuncC
37 36 7 sseldd CCatSVIDFuncC
38 9 37 eqeltrrd CCatSV1stI2ndIDFuncC
39 df-br 1stIDFuncC2ndI1stI2ndIDFuncC
40 38 39 sylibr CCatSV1stIDFuncC2ndI
41 f1oi IxHomDy:xHomDy1-1 ontoxHomDy
42 eqid BaseD=BaseD
43 5 adantr CCatSVxBaseDyBaseDDCat
44 eqid HomD=HomD
45 simprl CCatSVxBaseDyBaseDxBaseD
46 simprr CCatSVxBaseDyBaseDyBaseD
47 2 42 43 44 45 46 idfu2nd CCatSVxBaseDyBaseDx2ndIy=IxHomDy
48 eqidd CCatSVxBaseDyBaseDxHomDy=xHomDy
49 eqid HomC=HomC
50 1 49 resshom SVHomC=HomD
51 50 ad2antlr CCatSVxBaseDyBaseDHomC=HomD
52 2 42 43 45 idfu1 CCatSVxBaseDyBaseD1stIx=x
53 2 42 43 46 idfu1 CCatSVxBaseDyBaseD1stIy=y
54 51 52 53 oveq123d CCatSVxBaseDyBaseD1stIxHomC1stIy=xHomDy
55 47 48 54 f1oeq123d CCatSVxBaseDyBaseDx2ndIy:xHomDy1-1 onto1stIxHomC1stIyIxHomDy:xHomDy1-1 ontoxHomDy
56 41 55 mpbiri CCatSVxBaseDyBaseDx2ndIy:xHomDy1-1 onto1stIxHomC1stIy
57 56 ralrimivva CCatSVxBaseDyBaseDx2ndIy:xHomDy1-1 onto1stIxHomC1stIy
58 42 44 49 isffth2 1stIDFullCDFaithC2ndI1stIDFuncC2ndIxBaseDyBaseDx2ndIy:xHomDy1-1 onto1stIxHomC1stIy
59 40 57 58 sylanbrc CCatSV1stIDFullCDFaithC2ndI
60 df-br 1stIDFullCDFaithC2ndI1stI2ndIDFullCDFaithC
61 59 60 sylib CCatSV1stI2ndIDFullCDFaithC
62 9 61 eqeltrd CCatSVIDFullCDFaithC