Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fullsubc.b | |
|
fullsubc.h | |
||
fullsubc.c | |
||
fullsubc.s | |
||
fullsubc.d | |
||
fullsubc.e | |
||
Assertion | fullresc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullsubc.b | |
|
2 | fullsubc.h | |
|
3 | fullsubc.c | |
|
4 | fullsubc.s | |
|
5 | fullsubc.d | |
|
6 | fullsubc.e | |
|
7 | eqid | |
|
8 | 4 | adantr | |
9 | simprl | |
|
10 | 8 9 | sseldd | |
11 | simprr | |
|
12 | 8 11 | sseldd | |
13 | 2 1 7 10 12 | homfval | |
14 | 9 11 | ovresd | |
15 | 2 1 | homffn | |
16 | xpss12 | |
|
17 | 4 4 16 | syl2anc | |
18 | fnssres | |
|
19 | 15 17 18 | sylancr | |
20 | 6 1 3 19 4 | reschom | |
21 | 20 | oveqdr | |
22 | 14 21 | eqtr3d | |
23 | 5 1 | ressbas2 | |
24 | 4 23 | syl | |
25 | fvex | |
|
26 | 24 25 | eqeltrdi | |
27 | 5 7 | resshom | |
28 | 26 27 | syl | |
29 | 28 | oveqdr | |
30 | 13 22 29 | 3eqtr3rd | |
31 | 30 | ralrimivva | |
32 | eqid | |
|
33 | eqid | |
|
34 | 6 1 3 19 4 | rescbas | |
35 | 32 33 24 34 | homfeq | |
36 | 31 35 | mpbird | |
37 | eqid | |
|
38 | 5 37 | ressco | |
39 | 26 38 | syl | |
40 | 6 1 3 19 4 37 | rescco | |
41 | 39 40 | eqtr3d | |
42 | 41 36 | comfeqd | |
43 | 36 42 | jca | |