Step |
Hyp |
Ref |
Expression |
1 |
|
fullsubc.b |
|- B = ( Base ` C ) |
2 |
|
fullsubc.h |
|- H = ( Homf ` C ) |
3 |
|
fullsubc.c |
|- ( ph -> C e. Cat ) |
4 |
|
fullsubc.s |
|- ( ph -> S C_ B ) |
5 |
|
fullsubc.d |
|- D = ( C |`s S ) |
6 |
|
fullsubc.e |
|- E = ( C |`cat ( H |` ( S X. S ) ) ) |
7 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
8 |
4
|
adantr |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> S C_ B ) |
9 |
|
simprl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> x e. S ) |
10 |
8 9
|
sseldd |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> x e. B ) |
11 |
|
simprr |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> y e. S ) |
12 |
8 11
|
sseldd |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> y e. B ) |
13 |
2 1 7 10 12
|
homfval |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x H y ) = ( x ( Hom ` C ) y ) ) |
14 |
9 11
|
ovresd |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( H |` ( S X. S ) ) y ) = ( x H y ) ) |
15 |
2 1
|
homffn |
|- H Fn ( B X. B ) |
16 |
|
xpss12 |
|- ( ( S C_ B /\ S C_ B ) -> ( S X. S ) C_ ( B X. B ) ) |
17 |
4 4 16
|
syl2anc |
|- ( ph -> ( S X. S ) C_ ( B X. B ) ) |
18 |
|
fnssres |
|- ( ( H Fn ( B X. B ) /\ ( S X. S ) C_ ( B X. B ) ) -> ( H |` ( S X. S ) ) Fn ( S X. S ) ) |
19 |
15 17 18
|
sylancr |
|- ( ph -> ( H |` ( S X. S ) ) Fn ( S X. S ) ) |
20 |
6 1 3 19 4
|
reschom |
|- ( ph -> ( H |` ( S X. S ) ) = ( Hom ` E ) ) |
21 |
20
|
oveqdr |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( H |` ( S X. S ) ) y ) = ( x ( Hom ` E ) y ) ) |
22 |
14 21
|
eqtr3d |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x H y ) = ( x ( Hom ` E ) y ) ) |
23 |
5 1
|
ressbas2 |
|- ( S C_ B -> S = ( Base ` D ) ) |
24 |
4 23
|
syl |
|- ( ph -> S = ( Base ` D ) ) |
25 |
|
fvex |
|- ( Base ` D ) e. _V |
26 |
24 25
|
eqeltrdi |
|- ( ph -> S e. _V ) |
27 |
5 7
|
resshom |
|- ( S e. _V -> ( Hom ` C ) = ( Hom ` D ) ) |
28 |
26 27
|
syl |
|- ( ph -> ( Hom ` C ) = ( Hom ` D ) ) |
29 |
28
|
oveqdr |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
30 |
13 22 29
|
3eqtr3rd |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( Hom ` D ) y ) = ( x ( Hom ` E ) y ) ) |
31 |
30
|
ralrimivva |
|- ( ph -> A. x e. S A. y e. S ( x ( Hom ` D ) y ) = ( x ( Hom ` E ) y ) ) |
32 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
33 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
34 |
6 1 3 19 4
|
rescbas |
|- ( ph -> S = ( Base ` E ) ) |
35 |
32 33 24 34
|
homfeq |
|- ( ph -> ( ( Homf ` D ) = ( Homf ` E ) <-> A. x e. S A. y e. S ( x ( Hom ` D ) y ) = ( x ( Hom ` E ) y ) ) ) |
36 |
31 35
|
mpbird |
|- ( ph -> ( Homf ` D ) = ( Homf ` E ) ) |
37 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
38 |
5 37
|
ressco |
|- ( S e. _V -> ( comp ` C ) = ( comp ` D ) ) |
39 |
26 38
|
syl |
|- ( ph -> ( comp ` C ) = ( comp ` D ) ) |
40 |
6 1 3 19 4 37
|
rescco |
|- ( ph -> ( comp ` C ) = ( comp ` E ) ) |
41 |
39 40
|
eqtr3d |
|- ( ph -> ( comp ` D ) = ( comp ` E ) ) |
42 |
41 36
|
comfeqd |
|- ( ph -> ( comf ` D ) = ( comf ` E ) ) |
43 |
36 42
|
jca |
|- ( ph -> ( ( Homf ` D ) = ( Homf ` E ) /\ ( comf ` D ) = ( comf ` E ) ) ) |