| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressffth.d |
⊢ 𝐷 = ( 𝐶 ↾s 𝑆 ) |
| 2 |
|
ressffth.i |
⊢ 𝐼 = ( idfunc ‘ 𝐷 ) |
| 3 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐷 ) |
| 4 |
|
resscat |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s 𝑆 ) ∈ Cat ) |
| 5 |
1 4
|
eqeltrid |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐷 ∈ Cat ) |
| 6 |
2
|
idfucl |
⊢ ( 𝐷 ∈ Cat → 𝐼 ∈ ( 𝐷 Func 𝐷 ) ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐼 ∈ ( 𝐷 Func 𝐷 ) ) |
| 8 |
|
1st2nd |
⊢ ( ( Rel ( 𝐷 Func 𝐷 ) ∧ 𝐼 ∈ ( 𝐷 Func 𝐷 ) ) → 𝐼 = 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ) |
| 9 |
3 7 8
|
sylancr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐼 = 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ) |
| 10 |
|
eqidd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) ) |
| 11 |
|
eqidd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ 𝐷 ) = ( compf ‘ 𝐷 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 13 |
12
|
ressinbas |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 15 |
1 14
|
eqtrid |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐷 = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 16 |
15
|
fveq2d |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) |
| 17 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 18 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐶 ∈ Cat ) |
| 19 |
|
inss2 |
⊢ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) |
| 20 |
19
|
a1i |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) ) |
| 21 |
|
eqid |
⊢ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) |
| 22 |
|
eqid |
⊢ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) = ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) |
| 23 |
12 17 18 20 21 22
|
fullresc |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ∧ ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) ) |
| 24 |
23
|
simpld |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 25 |
16 24
|
eqtrd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 26 |
15
|
fveq2d |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) |
| 27 |
23
|
simprd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 28 |
26 27
|
eqtrd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 29 |
1
|
ovexi |
⊢ 𝐷 ∈ V |
| 30 |
29
|
a1i |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐷 ∈ V ) |
| 31 |
|
ovexd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ∈ V ) |
| 32 |
10 11 25 28 30 30 30 31
|
funcpropd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐷 Func 𝐷 ) = ( 𝐷 Func ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 33 |
12 17 18 20
|
fullsubc |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |
| 34 |
|
funcres2 |
⊢ ( ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ∈ ( Subcat ‘ 𝐶 ) → ( 𝐷 Func ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ⊆ ( 𝐷 Func 𝐶 ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐷 Func ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ⊆ ( 𝐷 Func 𝐶 ) ) |
| 36 |
32 35
|
eqsstrd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐷 Func 𝐷 ) ⊆ ( 𝐷 Func 𝐶 ) ) |
| 37 |
36 7
|
sseldd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐼 ∈ ( 𝐷 Func 𝐶 ) ) |
| 38 |
9 37
|
eqeltrrd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( 𝐷 Func 𝐶 ) ) |
| 39 |
|
df-br |
⊢ ( ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ↔ 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( 𝐷 Func 𝐶 ) ) |
| 40 |
38 39
|
sylibr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ) |
| 41 |
|
f1oi |
⊢ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) |
| 42 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 43 |
5
|
adantr |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐷 ∈ Cat ) |
| 44 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 45 |
|
simprl |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
| 46 |
|
simprr |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 47 |
2 42 43 44 45 46
|
idfu2nd |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 48 |
|
eqidd |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 49 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 50 |
1 49
|
resshom |
⊢ ( 𝑆 ∈ 𝑉 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) ) |
| 51 |
50
|
ad2antlr |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) ) |
| 52 |
2 42 43 45
|
idfu1 |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) = 𝑥 ) |
| 53 |
2 42 43 46
|
idfu1 |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) = 𝑦 ) |
| 54 |
51 52 53
|
oveq123d |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 55 |
47 48 54
|
f1oeq123d |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) ↔ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 56 |
41 55
|
mpbiri |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 57 |
56
|
ralrimivva |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 58 |
42 44 49
|
isffth2 |
⊢ ( ( 1st ‘ 𝐼 ) ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ( 2nd ‘ 𝐼 ) ↔ ( ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) ) ) |
| 59 |
40 57 58
|
sylanbrc |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 1st ‘ 𝐼 ) ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ( 2nd ‘ 𝐼 ) ) |
| 60 |
|
df-br |
⊢ ( ( 1st ‘ 𝐼 ) ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ( 2nd ‘ 𝐼 ) ↔ 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ) |
| 61 |
59 60
|
sylib |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ) |
| 62 |
9 61
|
eqeltrd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐼 ∈ ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ) |