Step |
Hyp |
Ref |
Expression |
1 |
|
fullsubc.b |
|
2 |
|
fullsubc.h |
|
3 |
|
fullsubc.c |
|
4 |
|
fullsubc.s |
|
5 |
2 1
|
homffn |
|
6 |
1
|
fvexi |
|
7 |
|
sscres |
|
8 |
5 6 7
|
mp2an |
|
9 |
8
|
a1i |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
3
|
adantr |
|
13 |
4
|
sselda |
|
14 |
1 10 11 12 13
|
catidcl |
|
15 |
|
simpr |
|
16 |
15 15
|
ovresd |
|
17 |
2 1 10 13 13
|
homfval |
|
18 |
16 17
|
eqtrd |
|
19 |
14 18
|
eleqtrrd |
|
20 |
|
eqid |
|
21 |
12
|
ad3antrrr |
|
22 |
13
|
ad3antrrr |
|
23 |
4
|
adantr |
|
24 |
23
|
sselda |
|
25 |
24
|
adantr |
|
26 |
25
|
adantr |
|
27 |
23
|
adantr |
|
28 |
27
|
sselda |
|
29 |
28
|
adantr |
|
30 |
|
simprl |
|
31 |
|
simprr |
|
32 |
1 10 20 21 22 26 29 30 31
|
catcocl |
|
33 |
15
|
ad3antrrr |
|
34 |
|
simplr |
|
35 |
33 34
|
ovresd |
|
36 |
2 1 10 22 29
|
homfval |
|
37 |
35 36
|
eqtrd |
|
38 |
32 37
|
eleqtrrd |
|
39 |
38
|
ralrimivva |
|
40 |
|
simplr |
|
41 |
|
simpr |
|
42 |
40 41
|
ovresd |
|
43 |
13
|
adantr |
|
44 |
2 1 10 43 24
|
homfval |
|
45 |
42 44
|
eqtrd |
|
46 |
45
|
adantr |
|
47 |
|
simplr |
|
48 |
|
simpr |
|
49 |
47 48
|
ovresd |
|
50 |
2 1 10 25 28
|
homfval |
|
51 |
49 50
|
eqtrd |
|
52 |
51
|
raleqdv |
|
53 |
46 52
|
raleqbidv |
|
54 |
39 53
|
mpbird |
|
55 |
54
|
ralrimiva |
|
56 |
55
|
ralrimiva |
|
57 |
19 56
|
jca |
|
58 |
57
|
ralrimiva |
|
59 |
|
xpss12 |
|
60 |
4 4 59
|
syl2anc |
|
61 |
|
fnssres |
|
62 |
5 60 61
|
sylancr |
|
63 |
2 11 20 3 62
|
issubc2 |
|
64 |
9 58 63
|
mpbir2and |
|