Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Functors
imaidfu2lem
Next ⟩
imaidfu
Metamath Proof Explorer
Ascii
Unicode
Theorem
imaidfu2lem
Description:
Lemma for
imaidfu2
.
(Contributed by
Zhi Wang
, 10-Nov-2025)
Ref
Expression
Hypotheses
imaidfu.i
⊢
I
=
id
func
⁡
C
imaidfu.d
⊢
φ
→
I
∈
D
Func
E
Assertion
imaidfu2lem
⊢
φ
→
1
st
⁡
I
Base
D
=
Base
D
Proof
Step
Hyp
Ref
Expression
1
imaidfu.i
⊢
I
=
id
func
⁡
C
2
imaidfu.d
⊢
φ
→
I
∈
D
Func
E
3
eqidd
⊢
φ
→
Base
D
=
Base
D
4
1
2
3
idfu1sta
⊢
φ
→
1
st
⁡
I
=
I
↾
Base
D
5
4
imaeq1d
⊢
φ
→
1
st
⁡
I
Base
D
=
I
↾
Base
D
Base
D
6
ssid
⊢
Base
D
⊆
Base
D
7
resiima
⊢
Base
D
⊆
Base
D
→
I
↾
Base
D
Base
D
=
Base
D
8
6
7
ax-mp
⊢
I
↾
Base
D
Base
D
=
Base
D
9
5
8
eqtrdi
⊢
φ
→
1
st
⁡
I
Base
D
=
Base
D