Metamath Proof Explorer


Theorem imaidfu

Description: The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses imaidfu.i I = id func C
imaidfu.d φ I D Func E
imaidfu.h H = Hom D
imaidfu.j J = Hom 𝑓 D
imaidfu.k K = x S , y S p 1 st I -1 x × 1 st I -1 y 2 nd I p H p
imaidfu.s S = 1 st I A
Assertion imaidfu φ J S × S = K

Proof

Step Hyp Ref Expression
1 imaidfu.i I = id func C
2 imaidfu.d φ I D Func E
3 imaidfu.h H = Hom D
4 imaidfu.j J = Hom 𝑓 D
5 imaidfu.k K = x S , y S p 1 st I -1 x × 1 st I -1 y 2 nd I p H p
6 imaidfu.s S = 1 st I A
7 eqidd φ Base D = Base D
8 1 2 7 idfu1sta φ 1 st I = I Base D
9 8 adantr φ z S w S 1 st I = I Base D
10 9 cnveqd φ z S w S 1 st I -1 = I Base D -1
11 cnvresid I Base D -1 = I Base D
12 10 11 eqtrdi φ z S w S 1 st I -1 = I Base D
13 12 fveq1d φ z S w S 1 st I -1 z = I Base D z
14 imassrn 1 st I A ran 1 st I
15 6 14 eqsstri S ran 1 st I
16 8 rneqd φ ran 1 st I = ran I Base D
17 rnresi ran I Base D = Base D
18 16 17 eqtrdi φ ran 1 st I = Base D
19 15 18 sseqtrid φ S Base D
20 19 adantr φ z S w S S Base D
21 simprl φ z S w S z S
22 20 21 sseldd φ z S w S z Base D
23 fvresi z Base D I Base D z = z
24 22 23 syl φ z S w S I Base D z = z
25 13 24 eqtrd φ z S w S 1 st I -1 z = z
26 12 fveq1d φ z S w S 1 st I -1 w = I Base D w
27 simprr φ z S w S w S
28 20 27 sseldd φ z S w S w Base D
29 fvresi w Base D I Base D w = w
30 28 29 syl φ z S w S I Base D w = w
31 26 30 eqtrd φ z S w S 1 st I -1 w = w
32 25 31 oveq12d φ z S w S 1 st I -1 z 2 nd I 1 st I -1 w = z 2 nd I w
33 25 31 oveq12d φ z S w S 1 st I -1 z H 1 st I -1 w = z H w
34 32 33 imaeq12d φ z S w S 1 st I -1 z 2 nd I 1 st I -1 w 1 st I -1 z H 1 st I -1 w = z 2 nd I w z H w
35 f1oi I Base D : Base D 1-1 onto Base D
36 9 f1oeq1d φ z S w S 1 st I : Base D 1-1 onto Base D I Base D : Base D 1-1 onto Base D
37 35 36 mpbiri φ z S w S 1 st I : Base D 1-1 onto Base D
38 f1of1 1 st I : Base D 1-1 onto Base D 1 st I : Base D 1-1 Base D
39 37 38 syl φ z S w S 1 st I : Base D 1-1 Base D
40 fvexd φ z S w S 1 st I V
41 6 39 21 27 40 5 imaf1hom φ z S w S z K w = 1 st I -1 z 2 nd I 1 st I -1 w 1 st I -1 z H 1 st I -1 w
42 eqid Base D = Base D
43 4 42 3 22 28 homfval φ z S w S z J w = z H w
44 2 adantr φ z S w S I D Func E
45 eqidd φ z S w S Base D = Base D
46 3 oveqi z H w = z Hom D w
47 46 a1i φ z S w S z H w = z Hom D w
48 1 44 45 22 28 47 idfu2nda φ z S w S z 2 nd I w = I z H w
49 48 imaeq1d φ z S w S z 2 nd I w z H w = I z H w z H w
50 ssid z H w z H w
51 resiima z H w z H w I z H w z H w = z H w
52 50 51 ax-mp I z H w z H w = z H w
53 49 52 eqtrdi φ z S w S z 2 nd I w z H w = z H w
54 43 53 eqtr4d φ z S w S z J w = z 2 nd I w z H w
55 34 41 54 3eqtr4rd φ z S w S z J w = z K w
56 55 ralrimivva φ z S w S z J w = z K w
57 fveq2 q = z w J q = J z w
58 df-ov z J w = J z w
59 57 58 eqtr4di q = z w J q = z J w
60 fveq2 q = z w K q = K z w
61 df-ov z K w = K z w
62 60 61 eqtr4di q = z w K q = z K w
63 59 62 eqeq12d q = z w J q = K q z J w = z K w
64 63 ralxp q S × S J q = K q z S w S z J w = z K w
65 56 64 sylibr φ q S × S J q = K q
66 4 42 homffn J Fn Base D × Base D
67 66 a1i φ J Fn Base D × Base D
68 fvexd φ 1 st I V
69 68 68 5 imasubclem2 φ K Fn S × S
70 xpss12 S Base D S Base D S × S Base D × Base D
71 19 19 70 syl2anc φ S × S Base D × Base D
72 fvreseq1 J Fn Base D × Base D K Fn S × S S × S Base D × Base D J S × S = K q S × S J q = K q
73 67 69 71 72 syl21anc φ J S × S = K q S × S J q = K q
74 65 73 mpbird φ J S × S = K