| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imaidfu.i |
|- I = ( idFunc ` C ) |
| 2 |
|
imaidfu.d |
|- ( ph -> I e. ( D Func E ) ) |
| 3 |
|
imaidfu.h |
|- H = ( Hom ` D ) |
| 4 |
|
imaidfu.j |
|- J = ( Homf ` D ) |
| 5 |
|
imaidfu.k |
|- K = ( x e. S , y e. S |-> U_ p e. ( ( `' ( 1st ` I ) " { x } ) X. ( `' ( 1st ` I ) " { y } ) ) ( ( ( 2nd ` I ) ` p ) " ( H ` p ) ) ) |
| 6 |
|
imaidfu.s |
|- S = ( ( 1st ` I ) " A ) |
| 7 |
|
eqidd |
|- ( ph -> ( Base ` D ) = ( Base ` D ) ) |
| 8 |
1 2 7
|
idfu1sta |
|- ( ph -> ( 1st ` I ) = ( _I |` ( Base ` D ) ) ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( 1st ` I ) = ( _I |` ( Base ` D ) ) ) |
| 10 |
9
|
cnveqd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> `' ( 1st ` I ) = `' ( _I |` ( Base ` D ) ) ) |
| 11 |
|
cnvresid |
|- `' ( _I |` ( Base ` D ) ) = ( _I |` ( Base ` D ) ) |
| 12 |
10 11
|
eqtrdi |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> `' ( 1st ` I ) = ( _I |` ( Base ` D ) ) ) |
| 13 |
12
|
fveq1d |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( `' ( 1st ` I ) ` z ) = ( ( _I |` ( Base ` D ) ) ` z ) ) |
| 14 |
|
imassrn |
|- ( ( 1st ` I ) " A ) C_ ran ( 1st ` I ) |
| 15 |
6 14
|
eqsstri |
|- S C_ ran ( 1st ` I ) |
| 16 |
8
|
rneqd |
|- ( ph -> ran ( 1st ` I ) = ran ( _I |` ( Base ` D ) ) ) |
| 17 |
|
rnresi |
|- ran ( _I |` ( Base ` D ) ) = ( Base ` D ) |
| 18 |
16 17
|
eqtrdi |
|- ( ph -> ran ( 1st ` I ) = ( Base ` D ) ) |
| 19 |
15 18
|
sseqtrid |
|- ( ph -> S C_ ( Base ` D ) ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> S C_ ( Base ` D ) ) |
| 21 |
|
simprl |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. S ) |
| 22 |
20 21
|
sseldd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. ( Base ` D ) ) |
| 23 |
|
fvresi |
|- ( z e. ( Base ` D ) -> ( ( _I |` ( Base ` D ) ) ` z ) = z ) |
| 24 |
22 23
|
syl |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( _I |` ( Base ` D ) ) ` z ) = z ) |
| 25 |
13 24
|
eqtrd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( `' ( 1st ` I ) ` z ) = z ) |
| 26 |
12
|
fveq1d |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( `' ( 1st ` I ) ` w ) = ( ( _I |` ( Base ` D ) ) ` w ) ) |
| 27 |
|
simprr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. S ) |
| 28 |
20 27
|
sseldd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. ( Base ` D ) ) |
| 29 |
|
fvresi |
|- ( w e. ( Base ` D ) -> ( ( _I |` ( Base ` D ) ) ` w ) = w ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( _I |` ( Base ` D ) ) ` w ) = w ) |
| 31 |
26 30
|
eqtrd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( `' ( 1st ` I ) ` w ) = w ) |
| 32 |
25 31
|
oveq12d |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( `' ( 1st ` I ) ` z ) ( 2nd ` I ) ( `' ( 1st ` I ) ` w ) ) = ( z ( 2nd ` I ) w ) ) |
| 33 |
25 31
|
oveq12d |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( `' ( 1st ` I ) ` z ) H ( `' ( 1st ` I ) ` w ) ) = ( z H w ) ) |
| 34 |
32 33
|
imaeq12d |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( ( `' ( 1st ` I ) ` z ) ( 2nd ` I ) ( `' ( 1st ` I ) ` w ) ) " ( ( `' ( 1st ` I ) ` z ) H ( `' ( 1st ` I ) ` w ) ) ) = ( ( z ( 2nd ` I ) w ) " ( z H w ) ) ) |
| 35 |
|
f1oi |
|- ( _I |` ( Base ` D ) ) : ( Base ` D ) -1-1-onto-> ( Base ` D ) |
| 36 |
9
|
f1oeq1d |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( 1st ` I ) : ( Base ` D ) -1-1-onto-> ( Base ` D ) <-> ( _I |` ( Base ` D ) ) : ( Base ` D ) -1-1-onto-> ( Base ` D ) ) ) |
| 37 |
35 36
|
mpbiri |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( 1st ` I ) : ( Base ` D ) -1-1-onto-> ( Base ` D ) ) |
| 38 |
|
f1of1 |
|- ( ( 1st ` I ) : ( Base ` D ) -1-1-onto-> ( Base ` D ) -> ( 1st ` I ) : ( Base ` D ) -1-1-> ( Base ` D ) ) |
| 39 |
37 38
|
syl |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( 1st ` I ) : ( Base ` D ) -1-1-> ( Base ` D ) ) |
| 40 |
|
fvexd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( 1st ` I ) e. _V ) |
| 41 |
6 39 21 27 40 5
|
imaf1hom |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z K w ) = ( ( ( `' ( 1st ` I ) ` z ) ( 2nd ` I ) ( `' ( 1st ` I ) ` w ) ) " ( ( `' ( 1st ` I ) ` z ) H ( `' ( 1st ` I ) ` w ) ) ) ) |
| 42 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 43 |
4 42 3 22 28
|
homfval |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z J w ) = ( z H w ) ) |
| 44 |
2
|
adantr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> I e. ( D Func E ) ) |
| 45 |
|
eqidd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( Base ` D ) = ( Base ` D ) ) |
| 46 |
3
|
oveqi |
|- ( z H w ) = ( z ( Hom ` D ) w ) |
| 47 |
46
|
a1i |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z H w ) = ( z ( Hom ` D ) w ) ) |
| 48 |
1 44 45 22 28 47
|
idfu2nda |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z ( 2nd ` I ) w ) = ( _I |` ( z H w ) ) ) |
| 49 |
48
|
imaeq1d |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( z ( 2nd ` I ) w ) " ( z H w ) ) = ( ( _I |` ( z H w ) ) " ( z H w ) ) ) |
| 50 |
|
ssid |
|- ( z H w ) C_ ( z H w ) |
| 51 |
|
resiima |
|- ( ( z H w ) C_ ( z H w ) -> ( ( _I |` ( z H w ) ) " ( z H w ) ) = ( z H w ) ) |
| 52 |
50 51
|
ax-mp |
|- ( ( _I |` ( z H w ) ) " ( z H w ) ) = ( z H w ) |
| 53 |
49 52
|
eqtrdi |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( z ( 2nd ` I ) w ) " ( z H w ) ) = ( z H w ) ) |
| 54 |
43 53
|
eqtr4d |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z J w ) = ( ( z ( 2nd ` I ) w ) " ( z H w ) ) ) |
| 55 |
34 41 54
|
3eqtr4rd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z J w ) = ( z K w ) ) |
| 56 |
55
|
ralrimivva |
|- ( ph -> A. z e. S A. w e. S ( z J w ) = ( z K w ) ) |
| 57 |
|
fveq2 |
|- ( q = <. z , w >. -> ( J ` q ) = ( J ` <. z , w >. ) ) |
| 58 |
|
df-ov |
|- ( z J w ) = ( J ` <. z , w >. ) |
| 59 |
57 58
|
eqtr4di |
|- ( q = <. z , w >. -> ( J ` q ) = ( z J w ) ) |
| 60 |
|
fveq2 |
|- ( q = <. z , w >. -> ( K ` q ) = ( K ` <. z , w >. ) ) |
| 61 |
|
df-ov |
|- ( z K w ) = ( K ` <. z , w >. ) |
| 62 |
60 61
|
eqtr4di |
|- ( q = <. z , w >. -> ( K ` q ) = ( z K w ) ) |
| 63 |
59 62
|
eqeq12d |
|- ( q = <. z , w >. -> ( ( J ` q ) = ( K ` q ) <-> ( z J w ) = ( z K w ) ) ) |
| 64 |
63
|
ralxp |
|- ( A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) <-> A. z e. S A. w e. S ( z J w ) = ( z K w ) ) |
| 65 |
56 64
|
sylibr |
|- ( ph -> A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) ) |
| 66 |
4 42
|
homffn |
|- J Fn ( ( Base ` D ) X. ( Base ` D ) ) |
| 67 |
66
|
a1i |
|- ( ph -> J Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 68 |
|
fvexd |
|- ( ph -> ( 1st ` I ) e. _V ) |
| 69 |
68 68 5
|
imasubclem2 |
|- ( ph -> K Fn ( S X. S ) ) |
| 70 |
|
xpss12 |
|- ( ( S C_ ( Base ` D ) /\ S C_ ( Base ` D ) ) -> ( S X. S ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 71 |
19 19 70
|
syl2anc |
|- ( ph -> ( S X. S ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 72 |
|
fvreseq1 |
|- ( ( ( J Fn ( ( Base ` D ) X. ( Base ` D ) ) /\ K Fn ( S X. S ) ) /\ ( S X. S ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) -> ( ( J |` ( S X. S ) ) = K <-> A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) ) ) |
| 73 |
67 69 71 72
|
syl21anc |
|- ( ph -> ( ( J |` ( S X. S ) ) = K <-> A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) ) ) |
| 74 |
65 73
|
mpbird |
|- ( ph -> ( J |` ( S X. S ) ) = K ) |