Metamath Proof Explorer


Theorem imaidfu

Description: The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses imaidfu.i 𝐼 = ( idfunc𝐶 )
imaidfu.d ( 𝜑𝐼 ∈ ( 𝐷 Func 𝐸 ) )
imaidfu.h 𝐻 = ( Hom ‘ 𝐷 )
imaidfu.j 𝐽 = ( Homf𝐷 )
imaidfu.k 𝐾 = ( 𝑥𝑆 , 𝑦𝑆 𝑝 ∈ ( ( ( 1st𝐼 ) “ { 𝑥 } ) × ( ( 1st𝐼 ) “ { 𝑦 } ) ) ( ( ( 2nd𝐼 ) ‘ 𝑝 ) “ ( 𝐻𝑝 ) ) )
imaidfu.s 𝑆 = ( ( 1st𝐼 ) “ 𝐴 )
Assertion imaidfu ( 𝜑 → ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 )

Proof

Step Hyp Ref Expression
1 imaidfu.i 𝐼 = ( idfunc𝐶 )
2 imaidfu.d ( 𝜑𝐼 ∈ ( 𝐷 Func 𝐸 ) )
3 imaidfu.h 𝐻 = ( Hom ‘ 𝐷 )
4 imaidfu.j 𝐽 = ( Homf𝐷 )
5 imaidfu.k 𝐾 = ( 𝑥𝑆 , 𝑦𝑆 𝑝 ∈ ( ( ( 1st𝐼 ) “ { 𝑥 } ) × ( ( 1st𝐼 ) “ { 𝑦 } ) ) ( ( ( 2nd𝐼 ) ‘ 𝑝 ) “ ( 𝐻𝑝 ) ) )
6 imaidfu.s 𝑆 = ( ( 1st𝐼 ) “ 𝐴 )
7 eqidd ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) )
8 1 2 7 idfu1sta ( 𝜑 → ( 1st𝐼 ) = ( I ↾ ( Base ‘ 𝐷 ) ) )
9 8 adantr ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 1st𝐼 ) = ( I ↾ ( Base ‘ 𝐷 ) ) )
10 9 cnveqd ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 1st𝐼 ) = ( I ↾ ( Base ‘ 𝐷 ) ) )
11 cnvresid ( I ↾ ( Base ‘ 𝐷 ) ) = ( I ↾ ( Base ‘ 𝐷 ) )
12 10 11 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 1st𝐼 ) = ( I ↾ ( Base ‘ 𝐷 ) ) )
13 12 fveq1d ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( 1st𝐼 ) ‘ 𝑧 ) = ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑧 ) )
14 imassrn ( ( 1st𝐼 ) “ 𝐴 ) ⊆ ran ( 1st𝐼 )
15 6 14 eqsstri 𝑆 ⊆ ran ( 1st𝐼 )
16 8 rneqd ( 𝜑 → ran ( 1st𝐼 ) = ran ( I ↾ ( Base ‘ 𝐷 ) ) )
17 rnresi ran ( I ↾ ( Base ‘ 𝐷 ) ) = ( Base ‘ 𝐷 )
18 16 17 eqtrdi ( 𝜑 → ran ( 1st𝐼 ) = ( Base ‘ 𝐷 ) )
19 15 18 sseqtrid ( 𝜑𝑆 ⊆ ( Base ‘ 𝐷 ) )
20 19 adantr ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐷 ) )
21 simprl ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → 𝑧𝑆 )
22 20 21 sseldd ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) )
23 fvresi ( 𝑧 ∈ ( Base ‘ 𝐷 ) → ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑧 ) = 𝑧 )
24 22 23 syl ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑧 ) = 𝑧 )
25 13 24 eqtrd ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( 1st𝐼 ) ‘ 𝑧 ) = 𝑧 )
26 12 fveq1d ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( 1st𝐼 ) ‘ 𝑤 ) = ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑤 ) )
27 simprr ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → 𝑤𝑆 )
28 20 27 sseldd ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → 𝑤 ∈ ( Base ‘ 𝐷 ) )
29 fvresi ( 𝑤 ∈ ( Base ‘ 𝐷 ) → ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑤 ) = 𝑤 )
30 28 29 syl ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑤 ) = 𝑤 )
31 26 30 eqtrd ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( 1st𝐼 ) ‘ 𝑤 ) = 𝑤 )
32 25 31 oveq12d ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( ( 1st𝐼 ) ‘ 𝑧 ) ( 2nd𝐼 ) ( ( 1st𝐼 ) ‘ 𝑤 ) ) = ( 𝑧 ( 2nd𝐼 ) 𝑤 ) )
33 25 31 oveq12d ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( ( 1st𝐼 ) ‘ 𝑧 ) 𝐻 ( ( 1st𝐼 ) ‘ 𝑤 ) ) = ( 𝑧 𝐻 𝑤 ) )
34 32 33 imaeq12d ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( ( ( 1st𝐼 ) ‘ 𝑧 ) ( 2nd𝐼 ) ( ( 1st𝐼 ) ‘ 𝑤 ) ) “ ( ( ( 1st𝐼 ) ‘ 𝑧 ) 𝐻 ( ( 1st𝐼 ) ‘ 𝑤 ) ) ) = ( ( 𝑧 ( 2nd𝐼 ) 𝑤 ) “ ( 𝑧 𝐻 𝑤 ) ) )
35 f1oi ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝐷 )
36 9 f1oeq1d ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( 1st𝐼 ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝐷 ) ↔ ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝐷 ) ) )
37 35 36 mpbiri ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 1st𝐼 ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝐷 ) )
38 f1of1 ( ( 1st𝐼 ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝐷 ) → ( 1st𝐼 ) : ( Base ‘ 𝐷 ) –1-1→ ( Base ‘ 𝐷 ) )
39 37 38 syl ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 1st𝐼 ) : ( Base ‘ 𝐷 ) –1-1→ ( Base ‘ 𝐷 ) )
40 fvexd ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 1st𝐼 ) ∈ V )
41 6 39 21 27 40 5 imaf1hom ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 𝑧 𝐾 𝑤 ) = ( ( ( ( 1st𝐼 ) ‘ 𝑧 ) ( 2nd𝐼 ) ( ( 1st𝐼 ) ‘ 𝑤 ) ) “ ( ( ( 1st𝐼 ) ‘ 𝑧 ) 𝐻 ( ( 1st𝐼 ) ‘ 𝑤 ) ) ) )
42 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
43 4 42 3 22 28 homfval ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐻 𝑤 ) )
44 2 adantr ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → 𝐼 ∈ ( 𝐷 Func 𝐸 ) )
45 eqidd ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) )
46 3 oveqi ( 𝑧 𝐻 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 )
47 46 a1i ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) )
48 1 44 45 22 28 47 idfu2nda ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 𝑧 ( 2nd𝐼 ) 𝑤 ) = ( I ↾ ( 𝑧 𝐻 𝑤 ) ) )
49 48 imaeq1d ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( 𝑧 ( 2nd𝐼 ) 𝑤 ) “ ( 𝑧 𝐻 𝑤 ) ) = ( ( I ↾ ( 𝑧 𝐻 𝑤 ) ) “ ( 𝑧 𝐻 𝑤 ) ) )
50 ssid ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐻 𝑤 )
51 resiima ( ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐻 𝑤 ) → ( ( I ↾ ( 𝑧 𝐻 𝑤 ) ) “ ( 𝑧 𝐻 𝑤 ) ) = ( 𝑧 𝐻 𝑤 ) )
52 50 51 ax-mp ( ( I ↾ ( 𝑧 𝐻 𝑤 ) ) “ ( 𝑧 𝐻 𝑤 ) ) = ( 𝑧 𝐻 𝑤 )
53 49 52 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( ( 𝑧 ( 2nd𝐼 ) 𝑤 ) “ ( 𝑧 𝐻 𝑤 ) ) = ( 𝑧 𝐻 𝑤 ) )
54 43 53 eqtr4d ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 𝑧 𝐽 𝑤 ) = ( ( 𝑧 ( 2nd𝐼 ) 𝑤 ) “ ( 𝑧 𝐻 𝑤 ) ) )
55 34 41 54 3eqtr4rd ( ( 𝜑 ∧ ( 𝑧𝑆𝑤𝑆 ) ) → ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) )
56 55 ralrimivva ( 𝜑 → ∀ 𝑧𝑆𝑤𝑆 ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) )
57 fveq2 ( 𝑞 = ⟨ 𝑧 , 𝑤 ⟩ → ( 𝐽𝑞 ) = ( 𝐽 ‘ ⟨ 𝑧 , 𝑤 ⟩ ) )
58 df-ov ( 𝑧 𝐽 𝑤 ) = ( 𝐽 ‘ ⟨ 𝑧 , 𝑤 ⟩ )
59 57 58 eqtr4di ( 𝑞 = ⟨ 𝑧 , 𝑤 ⟩ → ( 𝐽𝑞 ) = ( 𝑧 𝐽 𝑤 ) )
60 fveq2 ( 𝑞 = ⟨ 𝑧 , 𝑤 ⟩ → ( 𝐾𝑞 ) = ( 𝐾 ‘ ⟨ 𝑧 , 𝑤 ⟩ ) )
61 df-ov ( 𝑧 𝐾 𝑤 ) = ( 𝐾 ‘ ⟨ 𝑧 , 𝑤 ⟩ )
62 60 61 eqtr4di ( 𝑞 = ⟨ 𝑧 , 𝑤 ⟩ → ( 𝐾𝑞 ) = ( 𝑧 𝐾 𝑤 ) )
63 59 62 eqeq12d ( 𝑞 = ⟨ 𝑧 , 𝑤 ⟩ → ( ( 𝐽𝑞 ) = ( 𝐾𝑞 ) ↔ ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) )
64 63 ralxp ( ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽𝑞 ) = ( 𝐾𝑞 ) ↔ ∀ 𝑧𝑆𝑤𝑆 ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) )
65 56 64 sylibr ( 𝜑 → ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽𝑞 ) = ( 𝐾𝑞 ) )
66 4 42 homffn 𝐽 Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) )
67 66 a1i ( 𝜑𝐽 Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) )
68 fvexd ( 𝜑 → ( 1st𝐼 ) ∈ V )
69 68 68 5 imasubclem2 ( 𝜑𝐾 Fn ( 𝑆 × 𝑆 ) )
70 xpss12 ( ( 𝑆 ⊆ ( Base ‘ 𝐷 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐷 ) ) → ( 𝑆 × 𝑆 ) ⊆ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) )
71 19 19 70 syl2anc ( 𝜑 → ( 𝑆 × 𝑆 ) ⊆ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) )
72 fvreseq1 ( ( ( 𝐽 Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ∧ 𝐾 Fn ( 𝑆 × 𝑆 ) ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) → ( ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ↔ ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽𝑞 ) = ( 𝐾𝑞 ) ) )
73 67 69 71 72 syl21anc ( 𝜑 → ( ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ↔ ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽𝑞 ) = ( 𝐾𝑞 ) ) )
74 65 73 mpbird ( 𝜑 → ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 )