Metamath Proof Explorer


Theorem imaidfu2lem

Description: Lemma for imaidfu2 . (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses imaidfu.i
|- I = ( idFunc ` C )
imaidfu.d
|- ( ph -> I e. ( D Func E ) )
Assertion imaidfu2lem
|- ( ph -> ( ( 1st ` I ) " ( Base ` D ) ) = ( Base ` D ) )

Proof

Step Hyp Ref Expression
1 imaidfu.i
 |-  I = ( idFunc ` C )
2 imaidfu.d
 |-  ( ph -> I e. ( D Func E ) )
3 eqidd
 |-  ( ph -> ( Base ` D ) = ( Base ` D ) )
4 1 2 3 idfu1sta
 |-  ( ph -> ( 1st ` I ) = ( _I |` ( Base ` D ) ) )
5 4 imaeq1d
 |-  ( ph -> ( ( 1st ` I ) " ( Base ` D ) ) = ( ( _I |` ( Base ` D ) ) " ( Base ` D ) ) )
6 ssid
 |-  ( Base ` D ) C_ ( Base ` D )
7 resiima
 |-  ( ( Base ` D ) C_ ( Base ` D ) -> ( ( _I |` ( Base ` D ) ) " ( Base ` D ) ) = ( Base ` D ) )
8 6 7 ax-mp
 |-  ( ( _I |` ( Base ` D ) ) " ( Base ` D ) ) = ( Base ` D )
9 5 8 eqtrdi
 |-  ( ph -> ( ( 1st ` I ) " ( Base ` D ) ) = ( Base ` D ) )