Metamath Proof Explorer


Theorem idinxpssinxp4

Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product (see also idinxpssinxp2 ). (Contributed by Peter Mazsa, 8-Mar-2019)

Ref Expression
Assertion idinxpssinxp4 x A y A x = y x R y x A x R x

Proof

Step Hyp Ref Expression
1 idinxpssinxp I A × A R A × A x A y A x = y x R y
2 idinxpssinxp2 I A × A R A × A x A x R x
3 1 2 bitr3i x A y A x = y x R y x A x R x