Metamath Proof Explorer


Theorem idinxpssinxp4

Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product (see also idinxpssinxp2 ). (Contributed by Peter Mazsa, 8-Mar-2019)

Ref Expression
Assertion idinxpssinxp4 xAyAx=yxRyxAxRx

Proof

Step Hyp Ref Expression
1 idinxpssinxp IA×ARA×AxAyAx=yxRy
2 idinxpssinxp2 IA×ARA×AxAxRx
3 1 2 bitr3i xAyAx=yxRyxAxRx