Metamath Proof Explorer


Theorem idinxpssinxp2

Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019) (Proof modification is discouraged.)

Ref Expression
Assertion idinxpssinxp2 I A × A R A × A x A x R x

Proof

Step Hyp Ref Expression
1 idinxpresid I A × A = I A
2 1 sseq1i I A × A R A × A I A R A × A
3 idrefALT I A R A × A x A x R A × A x
4 brinxp2 x R A × A x x A x A x R x
5 pm4.24 x A x A x A
6 5 anbi1i x A x R x x A x A x R x
7 4 6 bitr4i x R A × A x x A x R x
8 7 ralbii x A x R A × A x x A x A x R x
9 2 3 8 3bitri I A × A R A × A x A x A x R x
10 ralanid x A x A x R x x A x R x
11 9 10 bitri I A × A R A × A x A x R x