| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idinxpresid |
|- ( _I i^i ( A X. A ) ) = ( _I |` A ) |
| 2 |
1
|
sseq1i |
|- ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> ( _I |` A ) C_ ( R i^i ( A X. A ) ) ) |
| 3 |
|
idrefALT |
|- ( ( _I |` A ) C_ ( R i^i ( A X. A ) ) <-> A. x e. A x ( R i^i ( A X. A ) ) x ) |
| 4 |
|
brinxp2 |
|- ( x ( R i^i ( A X. A ) ) x <-> ( ( x e. A /\ x e. A ) /\ x R x ) ) |
| 5 |
|
pm4.24 |
|- ( x e. A <-> ( x e. A /\ x e. A ) ) |
| 6 |
5
|
anbi1i |
|- ( ( x e. A /\ x R x ) <-> ( ( x e. A /\ x e. A ) /\ x R x ) ) |
| 7 |
4 6
|
bitr4i |
|- ( x ( R i^i ( A X. A ) ) x <-> ( x e. A /\ x R x ) ) |
| 8 |
7
|
ralbii |
|- ( A. x e. A x ( R i^i ( A X. A ) ) x <-> A. x e. A ( x e. A /\ x R x ) ) |
| 9 |
2 3 8
|
3bitri |
|- ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> A. x e. A ( x e. A /\ x R x ) ) |
| 10 |
|
ralanid |
|- ( A. x e. A ( x e. A /\ x R x ) <-> A. x e. A x R x ) |
| 11 |
9 10
|
bitri |
|- ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> A. x e. A x R x ) |