Metamath Proof Explorer


Theorem idinxpssinxp3

Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 16-Mar-2019) (Proof modification is discouraged.)

Ref Expression
Assertion idinxpssinxp3
|- ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> ( _I |` A ) C_ R )

Proof

Step Hyp Ref Expression
1 idinxpssinxp2
 |-  ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> A. x e. A x R x )
2 idrefALT
 |-  ( ( _I |` A ) C_ R <-> A. x e. A x R x )
3 1 2 bitr4i
 |-  ( ( _I i^i ( A X. A ) ) C_ ( R i^i ( A X. A ) ) <-> ( _I |` A ) C_ R )