Metamath Proof Explorer


Theorem idinxpssinxp3

Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 16-Mar-2019) (Proof modification is discouraged.)

Ref Expression
Assertion idinxpssinxp3 ( ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ↔ ( I ↾ 𝐴 ) ⊆ 𝑅 )

Proof

Step Hyp Ref Expression
1 idinxpssinxp2 ( ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ↔ ∀ 𝑥𝐴 𝑥 𝑅 𝑥 )
2 idrefALT ( ( I ↾ 𝐴 ) ⊆ 𝑅 ↔ ∀ 𝑥𝐴 𝑥 𝑅 𝑥 )
3 1 2 bitr4i ( ( I ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ↔ ( I ↾ 𝐴 ) ⊆ 𝑅 )