Metamath Proof Explorer


Theorem idlaut

Description: The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses idlaut.b B=BaseK
idlaut.i I=LAutK
Assertion idlaut KAIBI

Proof

Step Hyp Ref Expression
1 idlaut.b B=BaseK
2 idlaut.i I=LAutK
3 f1oi IB:B1-1 ontoB
4 3 a1i KAIB:B1-1 ontoB
5 fvresi xBIBx=x
6 fvresi yBIBy=y
7 5 6 breqan12d xByBIBxKIByxKy
8 7 bicomd xByBxKyIBxKIBy
9 8 rgen2 xByBxKyIBxKIBy
10 9 a1i KAxByBxKyIBxKIBy
11 eqid K=K
12 1 11 2 islaut KAIBIIB:B1-1 ontoBxByBxKyIBxKIBy
13 4 10 12 mpbir2and KAIBI