Metamath Proof Explorer


Theorem islaut

Description: The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses lautset.b B=BaseK
lautset.l ˙=K
lautset.i I=LAutK
Assertion islaut KAFIF:B1-1 ontoBxByBx˙yFx˙Fy

Proof

Step Hyp Ref Expression
1 lautset.b B=BaseK
2 lautset.l ˙=K
3 lautset.i I=LAutK
4 1 2 3 lautset KAI=f|f:B1-1 ontoBxByBx˙yfx˙fy
5 4 eleq2d KAFIFf|f:B1-1 ontoBxByBx˙yfx˙fy
6 f1of F:B1-1 ontoBF:BB
7 1 fvexi BV
8 fex F:BBBVFV
9 6 7 8 sylancl F:B1-1 ontoBFV
10 9 adantr F:B1-1 ontoBxByBx˙yFx˙FyFV
11 f1oeq1 f=Ff:B1-1 ontoBF:B1-1 ontoB
12 fveq1 f=Ffx=Fx
13 fveq1 f=Ffy=Fy
14 12 13 breq12d f=Ffx˙fyFx˙Fy
15 14 bibi2d f=Fx˙yfx˙fyx˙yFx˙Fy
16 15 2ralbidv f=FxByBx˙yfx˙fyxByBx˙yFx˙Fy
17 11 16 anbi12d f=Ff:B1-1 ontoBxByBx˙yfx˙fyF:B1-1 ontoBxByBx˙yFx˙Fy
18 10 17 elab3 Ff|f:B1-1 ontoBxByBx˙yfx˙fyF:B1-1 ontoBxByBx˙yFx˙Fy
19 5 18 bitrdi KAFIF:B1-1 ontoBxByBx˙yFx˙Fy