Metamath Proof Explorer


Theorem idomringd

Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypothesis idomringd.1 φRIDomn
Assertion idomringd φRRing

Proof

Step Hyp Ref Expression
1 idomringd.1 φRIDomn
2 df-idom IDomn=CRingDomn
3 1 2 eleqtrdi φRCRingDomn
4 3 elin1d φRCRing
5 4 crngringd φRRing