Metamath Proof Explorer


Theorem idrefALT

Description: Alternate proof of idref not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012) (Proof shortened by Mario Carneiro, 3-Nov-2015) (Revised by NM, 30-Mar-2016) (Proof shortened by BJ, 28-Aug-2022) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion idrefALT IARxAxRx

Proof

Step Hyp Ref Expression
1 dfss2 IARyyIAyR
2 elrid yIAxAy=xx
3 2 imbi1i yIAyRxAy=xxyR
4 r19.23v xAy=xxyRxAy=xxyR
5 eleq1 y=xxyRxxR
6 df-br xRxxxR
7 5 6 bitr4di y=xxyRxRx
8 7 pm5.74i y=xxyRy=xxxRx
9 8 ralbii xAy=xxyRxAy=xxxRx
10 3 4 9 3bitr2i yIAyRxAy=xxxRx
11 10 albii yyIAyRyxAy=xxxRx
12 ralcom4 xAyy=xxxRxyxAy=xxxRx
13 opex xxV
14 biidd y=xxxRxxRx
15 13 14 ceqsalv yy=xxxRxxRx
16 15 ralbii xAyy=xxxRxxAxRx
17 11 12 16 3bitr2i yyIAyRxAxRx
18 1 17 bitri IARxAxRx