Metamath Proof Explorer


Theorem idsset

Description: _I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion idsset ⊒I=π–²π–²π–Ύπ—βˆ©π–²π–²π–Ύπ—-1

Proof

Step Hyp Ref Expression
1 reli ⊒Rel⁑I
2 relsset ⊒Rel⁑𝖲𝖲𝖾𝗍
3 relin1 ⊒Rel⁑𝖲𝖲𝖾𝗍→Relβ‘π–²π–²π–Ύπ—βˆ©π–²π–²π–Ύπ—-1
4 2 3 ax-mp ⊒Relβ‘π–²π–²π–Ύπ—βˆ©π–²π–²π–Ύπ—-1
5 eqss ⊒y=z↔yβŠ†z∧zβŠ†y
6 vex ⊒z∈V
7 6 ideq ⊒yIz↔y=z
8 brin ⊒yπ–²π–²π–Ύπ—βˆ©π–²π–²π–Ύπ—-1z↔y𝖲𝖲𝖾𝗍z∧y𝖲𝖲𝖾𝗍-1z
9 6 brsset ⊒y𝖲𝖲𝖾𝗍z↔yβŠ†z
10 vex ⊒y∈V
11 10 6 brcnv ⊒y𝖲𝖲𝖾𝗍-1z↔z𝖲𝖲𝖾𝗍y
12 10 brsset ⊒z𝖲𝖲𝖾𝗍y↔zβŠ†y
13 11 12 bitri ⊒y𝖲𝖲𝖾𝗍-1z↔zβŠ†y
14 9 13 anbi12i ⊒y𝖲𝖲𝖾𝗍z∧y𝖲𝖲𝖾𝗍-1z↔yβŠ†z∧zβŠ†y
15 8 14 bitri ⊒yπ–²π–²π–Ύπ—βˆ©π–²π–²π–Ύπ—-1z↔yβŠ†z∧zβŠ†y
16 5 7 15 3bitr4i ⊒yIz↔yπ–²π–²π–Ύπ—βˆ©π–²π–²π–Ύπ—-1z
17 1 4 16 eqbrriv ⊒I=π–²π–²π–Ύπ—βˆ©π–²π–²π–Ύπ—-1