Metamath Proof Explorer


Theorem idsymrel

Description: The identity relation is symmetric. (Contributed by AV, 19-Jun-2022)

Ref Expression
Assertion idsymrel SymRelI

Proof

Step Hyp Ref Expression
1 cnvi I-1=I
2 reli RelI
3 dfsymrel4 SymRelII-1=IRelI
4 1 2 3 mpbir2an SymRelI