Metamath Proof Explorer


Theorem ifnefals

Description: Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Assertion ifnefals ABifφAB=B¬φ

Proof

Step Hyp Ref Expression
1 iftrue φifφAB=A
2 1 adantl ABifφAB=BφifφAB=A
3 simplr ABifφAB=BφifφAB=B
4 simpll ABifφAB=BφAB
5 4 necomd ABifφAB=BφBA
6 3 5 eqnetrd ABifφAB=BφifφABA
7 6 neneqd ABifφAB=Bφ¬ifφAB=A
8 2 7 pm2.65da ABifφAB=B¬φ