Metamath Proof Explorer


Theorem ifpbi123

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi123 φ ψ χ θ τ η if- φ χ τ if- ψ θ η

Proof

Step Hyp Ref Expression
1 simp1 φ ψ χ θ τ η φ ψ
2 simp2 φ ψ χ θ τ η χ θ
3 simp3 φ ψ χ θ τ η τ η
4 1 2 3 ifpbi123d φ ψ χ θ τ η if- φ χ τ if- ψ θ η