Metamath Proof Explorer


Theorem ifpbi13

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi13 φψχθif-φτχif-ψτθ

Proof

Step Hyp Ref Expression
1 simpl φψχθφψ
2 1 imbi1d φψχθφτψτ
3 notbi φψ¬φ¬ψ
4 imbi12 ¬φ¬ψχθ¬φχ¬ψθ
5 3 4 sylbi φψχθ¬φχ¬ψθ
6 5 imp φψχθ¬φχ¬ψθ
7 2 6 anbi12d φψχθφτ¬φχψτ¬ψθ
8 dfifp2 if-φτχφτ¬φχ
9 dfifp2 if-ψτθψτ¬ψθ
10 7 8 9 3bitr4g φψχθif-φτχif-ψτθ