Metamath Proof Explorer


Theorem ifpbi2

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi2 φ ψ if- χ φ θ if- χ ψ θ

Proof

Step Hyp Ref Expression
1 imbi2 φ ψ χ φ χ ψ
2 1 anbi1d φ ψ χ φ ¬ χ θ χ ψ ¬ χ θ
3 dfifp2 if- χ φ θ χ φ ¬ χ θ
4 dfifp2 if- χ ψ θ χ ψ ¬ χ θ
5 2 3 4 3bitr4g φ ψ if- χ φ θ if- χ ψ θ