Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
Additional work on conditional logical operator
ifpbi2
Next ⟩
ifpbi3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifpbi2
Description:
Equivalence theorem for conditional logical operators.
(Contributed by
RP
, 14-Apr-2020)
Ref
Expression
Assertion
ifpbi2
⊢
φ
↔
ψ
→
if-
χ
φ
θ
↔
if-
χ
ψ
θ
Proof
Step
Hyp
Ref
Expression
1
imbi2
⊢
φ
↔
ψ
→
χ
→
φ
↔
χ
→
ψ
2
1
anbi1d
⊢
φ
↔
ψ
→
χ
→
φ
∧
¬
χ
→
θ
↔
χ
→
ψ
∧
¬
χ
→
θ
3
dfifp2
⊢
if-
χ
φ
θ
↔
χ
→
φ
∧
¬
χ
→
θ
4
dfifp2
⊢
if-
χ
ψ
θ
↔
χ
→
ψ
∧
¬
χ
→
θ
5
2
3
4
3bitr4g
⊢
φ
↔
ψ
→
if-
χ
φ
θ
↔
if-
χ
ψ
θ