Metamath Proof Explorer


Theorem ifpbi2

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi2 φψif-χφθif-χψθ

Proof

Step Hyp Ref Expression
1 imbi2 φψχφχψ
2 1 anbi1d φψχφ¬χθχψ¬χθ
3 dfifp2 if-χφθχφ¬χθ
4 dfifp2 if-χψθχψ¬χθ
5 2 3 4 3bitr4g φψif-χφθif-χψθ