Metamath Proof Explorer


Theorem ifpim2

Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpim2 φ ψ if- ψ ¬ φ

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ¬ ψ
3 2 biantrur ψ ¬ φ ¬ ψ ψ ¬ φ
4 imor φ ψ ¬ φ ψ
5 orcom ¬ φ ψ ψ ¬ φ
6 4 5 bitri φ ψ ψ ¬ φ
7 dfifp4 if- ψ ¬ φ ¬ ψ ψ ¬ φ
8 3 6 7 3bitr4i φ ψ if- ψ ¬ φ