Metamath Proof Explorer


Theorem ifpim2

Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpim2 φψif-ψ¬φ

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ¬ψ
3 2 biantrur ψ¬φ¬ψψ¬φ
4 imor φψ¬φψ
5 orcom ¬φψψ¬φ
6 4 5 bitri φψψ¬φ
7 dfifp4 if-ψ¬φ¬ψψ¬φ
8 3 6 7 3bitr4i φψif-ψ¬φ