Metamath Proof Explorer


Theorem ifpnim2

Description: Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnim2 ¬φψif-ψ¬ψφ

Proof

Step Hyp Ref Expression
1 ifpnot23c ¬if-ψψ¬φif-ψ¬ψφ
2 ifpim4 φψif-ψψ¬φ
3 1 2 xchnxbir ¬φψif-ψ¬ψφ