Metamath Proof Explorer


Theorem ifpnot23b

Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnot23b ¬ if- φ ¬ ψ χ if- φ ψ ¬ χ

Proof

Step Hyp Ref Expression
1 ifpnot23 ¬ if- φ ¬ ψ χ if- φ ¬ ¬ ψ ¬ χ
2 notnotb ψ ¬ ¬ ψ
3 ifpbi2 ψ ¬ ¬ ψ if- φ ψ ¬ χ if- φ ¬ ¬ ψ ¬ χ
4 2 3 ax-mp if- φ ψ ¬ χ if- φ ¬ ¬ ψ ¬ χ
5 1 4 bitr4i ¬ if- φ ¬ ψ χ if- φ ψ ¬ χ