Metamath Proof Explorer


Theorem ifpxorxorb

Description: Factor conditional logic operator over xor in terms 2 and 3. (Contributed by RP, 21-Apr-2020)

Ref Expression
Assertion ifpxorxorb if-φψχθτif-φψθif-φχτ

Proof

Step Hyp Ref Expression
1 df-xor ψχ¬ψχ
2 df-xor θτ¬θτ
3 ifpbi23 ψχ¬ψχθτ¬θτif-φψχθτif-φ¬ψχ¬θτ
4 1 2 3 mp2an if-φψχθτif-φ¬ψχ¬θτ
5 ifpbibib if-φψχθτif-φψθif-φχτ
6 5 notbii ¬if-φψχθτ¬if-φψθif-φχτ
7 ifpnotnotb if-φ¬ψχ¬θτ¬if-φψχθτ
8 df-xor if-φψθif-φχτ¬if-φψθif-φχτ
9 6 7 8 3bitr4i if-φ¬ψχ¬θτif-φψθif-φχτ
10 4 9 bitri if-φψχθτif-φψθif-φχτ