Metamath Proof Explorer


Theorem ifval

Description: Another expression of the value of the if predicate, analogous to eqif . See also the more specialized iftrue and iffalse . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion ifval A=ifφBCφA=B¬φA=C

Proof

Step Hyp Ref Expression
1 eqif A=ifφBCφA=B¬φA=C
2 cases2 φA=B¬φA=CφA=B¬φA=C
3 1 2 bitri A=ifφBCφA=B¬φA=C